
Math 181 - Section X1
Midterm I

Review
Spring 2009

Chapter 1: Urban Services - Euler Circuits

Terms: Graph, vertex, edge, path, circuit, Euler circuit, valence, con-
nected graph, Eulerization, directed graph (digraph)

Results:

• A graph has an Euler circuit if and only if the graph is connected and
every vertex has even valence.

• Any connected graph can be “Eulerized” by doubling existing edges.
In terms of planning routes for postal workers, etc., this corresponds
to doubling back along part of the route.

Chapter 2: Business Efficiency - Hamiltonian Circuits & Span-
ning Trees

Terms: Hamiltonian circuit, spanning tree, order-requirement digraph,
critical path

The Traveling Salesman Problem (Algorithms for finding “good”
Hamiltonian circuits)

• “Brute force” method
- just list all Hamiltonian circuits and pick the cheapest one
- this will always find the cheapest Hamiltonian circuit, but it is not
efficient

• Nearest Neighbor Algorithm
- starting at a particular vertex, first pick the edge to the “nearest”
nieghbor. then do the same, starting at this neighbor. keep going
until all vertices have been reached (don’t return to a vertex you’ve
previously visited until the very end)
- this method is not guaranteed to find the cheapest Hamiltonian circuit
- the resulting circuit depends on the choice of initial vertex



• Sorted-Edges Algorithm
- start by listing all edges, in order of increasing cost. choose the
cheapest edges until all vertices have been reached, making sure to
never (1) close up any part of the circuit before all vertices have been
reached or (2) pick a third edge connecting to any vertex
- this method is not guaranteed to find the cheapest Hamiltonian circuit

Kruskal’s Algorithm (for finding a minimal-cost spanning tree)
- This is just like the sorted-edges algorithm above, except that you never
close up the circuits

Chapter 3: Planning and Scheduling - Task Scheduling & Bin
Packing Algorithms

Terms: Processor, priority list, chromatic number of a graph

Task-scheduling Algorithms (fixed number of processors)

• List-Processing Algorithm
- given a priority list, assign to the next idle processor the next “ready”
task on the priority list
- this does not always find an optimal schedule

• Critical-Path Scheduling Algorithm
- use critical paths to devise a new priority list, and then apply the
list-processing algorithm with this new priority list
- this does not always find an optimal schedule

• Decreasing-Time-List Algorithm
- this is just the Critical-Path algorithm when the tasks are all inde-
pendent (so the order-requirement digraph has no edges)

Bin-Packing Algorithms

• can think of this as scheduling independent tasks on an unspecified
number of processors, but within a given time limit

• Next Fit
- stick an item into the current open bin; if it doesn’t fit, close the bin
and move on to the next bin
- don’t need to keep track of any extra information



• First Fit
- stick an item into the first open bin into which it fits
- only close a bin when it’s full - need to keep track of which bins are
open and how much room is left in each

• Best Fit
- put item into the bin into which it fits “best”, that is, with the least
room left over
- only close a bin when it’s full

• Worst Fit
- put item into the bin into which it fits “worst”, that is, with the most
room left over
- only close a bin when it’s full

• Decreasing versions of all of the above
- first resort items into decreasing order in terms of size and then use
the above algorithms
- these tend to perform better than then above versions, but you need
to know the complete list of items in order to begin

Conflict Avoidance

• Can think of this in terms of graphs with labeled, or colored, vertices

• 4 Color Theorem: If a graph can be drawn without any of the edges
intersecting each other, then it can be colored using four colors or less

• The 4 Color Theorem says that, in particular, any map can be colored
using at most four colors


