Math 535 Homework IV (corrected)

Due Wed. Feb. 18

Bertrand Guillou

Problem 1. If d is a metric on X, define \tilde{d} , a "bounded" version of d, by

$$d(x, y) = \min\{d(x, y), 1\}.$$

Let $(X_1, d_1), (X_2, d_2), \ldots$ be metric spaces. Show that

$$D(\mathbf{x}, \mathbf{y}) = \sup_{n} \frac{\tilde{d}(x_n, y_n)}{n}$$

defines a metric on $\prod_n X_n$. (The proof given in class for $X_n = \mathbb{R}$ generalizes to show that this metric induces the product topology, so that a (countable) product of metrizable spaces is metrizable.)

Problem 2. Let X be a set. Show that a set of functions $f_n : X \to \mathbb{R}$ converge uniformly to f if and only if f_n converges to f in the uniform topology on \mathbb{R}^X .

Problem 3. Let X be a space and Y a metric space. Let $f_n : X \to Y$ be continuous for each n. Suppose $\{x_n\}$ converges to $x \in X$ and also that f_n converges uniformly to f. Show that the sequence $f_n(x_n)$ converges to f(x).

Problem 4. Let X be \mathbb{R} but with open sets only those of the form (a, ∞) , allowing $a = \pm \infty$ (convince yourself that this is a topology).

(i) For any subset $A \subseteq X$, describe the closure \overline{A} of A in X. In particular, find the closure of the singleton sets $\{x\}$, and use this to show that X is not metrizable.

(ii) Show, however, that (a very strong version of) the sequence lemma holds in X by showing that given any set A, there exists a sequence in A which simultaneously converges to every point of \overline{A} .

(iii) Use the above to show that the only continuous functions $f: X \to \mathbb{R}$ are the constant functions.

Problem 5. A space is **totally disconnected** if the only nonempty connected subsets are the singleton sets $\{x\}$. Show that \mathbb{Q} is totally disconnected.

Problem 6. Show that \mathbb{R}^{∞} , under the box topology, is not connected by showing that the set \mathcal{B} of bounded sequences is closed and open.

Problem 7. We know, in contrast, that \mathbb{R}^{∞} , being the product of connected spaces, is connected under the product topology. So \mathcal{B} cannot be both closed and open under the product topology.

(i) Show that \mathcal{B} is dense in \mathbb{R}^{∞} . (Hint: for any $\mathbf{x} \in \mathbb{R}^{\infty}$, find a sequence in \mathcal{B} which converges to \mathbf{x} .)

(ii) Show that \mathcal{B}^o , the interior of \mathcal{B} , is empty.