Math 535 Homework VII

Due Fri. Mar. 20

Bertrand Guillou

Problem 1. A space X is **first-countable** if for each $x \in X$, there is a countable set \mathscr{B} of neighborhoods of x such that any neighborhood U of x contains some $B \in \mathscr{B}$.

(i) Show that if X is first-countable, $A \subseteq X$ is a subset, and $x \in \overline{A}$, then there is a sequence in A converging to x.

(ii) Show that if X is first-countable and Y is arbitrary, then a function $f: X \to Y$ is continuous if it takes convergent sequences in X to convergent sequences in Y.

Problem 2. Show that a *closed* subset of a normal space is normal.

Problem 3. Show that if $\prod_{\alpha} X_{\alpha}$ is normal, then each X_{α} is normal.

Problem 4. (The Tangent Disc Topology) Let

$$X = \{(x, y) \in \mathbb{R}^2 | y \ge 0\}$$

be the upper half-plane, equipped with the following topology. Let $H \subseteq X$ be the points with *y*-coordinate > 0 and let *L* denote the *x*-axis. A subset of *H* is open in *X* if and only if it is open in the usual topology on \mathbb{R}^2 . For each $(x, 0) \in L$, add a basis element of the form $\{(x, 0)\} \cup D$, where *D* is an open disc in *H* which is tangent to *L* at (x, 0).

(i) Show that every subset of L is closed. Show more generally that a closed subset $A \subseteq X$ is of the form $(\overline{A \cap H}) \cup B$, where the closure is taken in \mathbb{R}^2 (with the usual topology) and B is an arbitrary subset of L.

(ii) Show that X is regular.

(Hint: If $(x, 0) \in L$ and A is closed not containing x, let $\{(x, 0)\} \cup D$ be a basis element containing (x, 0) and disjoint from A. Then $D = B_{\delta}(x, \delta)$. Let $D' = B_{\delta/2}(x, \delta/2)$ and $D'' = B_{3\delta/4}(x, 3\delta/4)$. Then $A \subseteq X \setminus \overline{D''}$.)

We will see later that this space is not normal