Math 432 Homework X

Due Fri. Apr. 23

Problem 1. Let \mathscr{B} be a basis for a topology on X and define a subset $U \subseteq X$ to be open, as it was in class, if for every $x \in U$ there is $V \in \mathscr{B}$ such that $x \in V \subseteq U$. Show that this satisfies the definition of a topology.

Problem 2. (a) (The cofinite topology) Let X be any set and define a nonempty subset $U \subseteq X$ to be open if $X \setminus U$ is finite. Show that this defines a topology on X.

(b) Let $X = \mathbb{R} \cup \{z\}$. Define a proper subset to be closed if it is finite and does not contain the point z. Show that this defines a topology on X and that the point z is dense in X (such a point is called a generic point).

Problem 3. Suppose $f : X \to Y$ is continuous and let $A \subseteq X$ be a subset. If x is a limit point of A, is f(x) a limit point of f(A)?

Problem 4. (a) Let $X = \mathbb{R} \cup \{\infty\}$, topologized as follows: if a subset W does not contain the point ∞ , then it is open if it is open in the usual topology on \mathbb{R} ; if W does contain ∞ , then W is open if $X \setminus W$ is closed in \mathbb{R} (under the usual topology) and contained in some closed interval [a, b]. Show this defines a topology on X.

(b) (Deferred until next week's homework.) Show that the space X from part (a) is homeomorphic to-

$$S^1 = \{ (x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1 \}.$$

Problem 5. Define a function $f : [0,1) \cup \{2\} \rightarrow [0,1]$ to be the inclusion $[0,1) \hookrightarrow [0,1]$ and f(2) = 1. Show that f is a continuous bijection but not a homeomorphism.

Problem 6. Let X be \mathbb{R} but with open sets only those of the form (a, ∞) , allowing $a = \pm \infty$ (convince yourself that this is a topology).

(i) For any subset $A \subseteq X$, describe the closure \overline{A} .

(ii) Show that X is not Hausdorff, and show that if $W \subseteq X$ is closed, there exists a sequence in W that converges to every point of W.

Problem 7. A space is **totally disconnected** if the only nonempty connected subsets are the singleton sets $\{x\}$. Show that \mathbb{Q} is totally disconnected.