Math 432 Homework XI

Due Fri. Apr. 30

Problem 1. (Deferred from last week) Show that the space X from part 4(a) of Homework X is homeomorphic to

$$S^{1} = \{ (x, y) \in \mathbb{R}^{2} | x^{2} + y^{2} = 1 \}.$$

Problem 2. Let $X = \mathbb{N}$, equipped with the cofinite topology (see HW X, problem 2(a)).

(a) Show that X is compact.

(b) Show that X is connected but not path connected. (You may use the fact that [0, 1] cannot be written as a countably infinite disjoint union of closed subsets.)

Problem 3. Generalize the proof given in class of the statement that compact subsets of Hausdorff spaces are closed to show that if X is Hausdorff and A and B are disjoint compact subsets of X, then there exist disjoint open sets U and V containing A and B.

Problem 4. (i) Show that a space X is Hausdorff if and only if the diagonal $\Delta(X) \subseteq X \times X$ is closed.

(ii) Show that if Y is Hausdorff and $f: X \to Y$ is continuous, then the graph of f is closed in $X \times Y$.

Problem 5. Show that \mathbb{R}^{∞} , under the box topology, is not connected by showing that the set \mathcal{B} of bounded sequences is closed and open.

Problem 6. We know, in contrast, that \mathbb{R}^{∞} , being the product of connected spaces, is connected under the product topology. So \mathcal{B} cannot be both closed and open under the product topology.

(i) Show that \mathcal{B} is dense in \mathbb{R}^{∞} . (Hint: for any $\mathbf{x} \in \mathbb{R}^{\infty}$, find a sequence in \mathcal{B} which converges to \mathbf{x} .)

(ii) Show that \mathcal{B}^{o} , the interior of \mathcal{B} , is empty.