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WEEK 10

BERTRAND GUILLOU

1. Mon, Mar. 28

At the end of class last time, we were discussing Eilenberg-Mac Lane spaces K(G,n). Here is
how one way to build these “by hand”:

Let n ≥ 2 and suppose G is abelian. Write G as a cokernel

Zn2 −→ Zn1 −→ G −→ 0

of a map of free abelian groups. We then define the n-skeleton to be Xn =
∨
n1
Sn. We define the

(n+ 1)-skeleton as the cofiber of the map∨
n2

Sn −→
∨
n1

Sn = Xn −→ Xn+1.

The cofiber Xn+1 is then a “Moore space” of type M(G,n), meaning that its only nontrivial reduced
homology group is Hn(Xn+1) ∼= G. By the Hurewicz theorem, we also get πn(Xn+1) ∼= G. However,
the cofiber Xn+1 may have nontrivial homotopy in degrees n+ 1 and higher. We thus attach n+ 2-
cells to kill πn+1. The result may still have homotopy in degrees n + 2 and higher, so we attach
n + 3-cells to kill πn+2. Attaching cells to kill all higher homotopy groups, we arrive at a CW
complex with the desired homotopy groups.

Although the above describes a construction of a space K(G,n), the model for K(G,n) specified
above does not have as much structure as one might wish. There are constructions of spaces
K(G,n) which produce topological abelian groups. Here is one such, due to McCord:

Let A be an abelian group and let X be a space. Let B(X,A) be the set of functions X −→ A
which are nonzero at only finitely points. This is an abelian group under pointwise addition.
We topologize the space B(X,A) as follows. For any k ≥ 1, let Bk(X,A) be the set of functions
X −→ A which are nonzero at at most k points. For k = 1, we have a surjection X×A � B1(X,A)
which sends a pair (x, a) to the function ax : X −→ A, where

ax(y) =
{
a y = x
0 y 6= x.

We topologize B1(X,A) as the quotient of X ×A. More generally, for any k, we have a surjection
(X ×A)k � Bk(X,A) defined by

((x1, a1), . . . , (xk, ak)) 7→ (a1)x1 + · · ·+ (ak)xk
.

We topologize Bk(X,A) as the above quotient space. The space B(X,A) is the union of the spaces
Bk(X,A), and we give B(X,A) the topology of the union.

We claim that B(X,A) becomes a topological abelian group. That is, the addition and inverse
maps are continuous. For the addition, it suffices to show that for any n and k, the addition
Bn(X,A)×Bk(X,A) −→ Bn+k(X,A) is continuous. But we have the diagram
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Bn(X,A)×Bk(X,A) // Bn+k(X,A)

(X ×A)n × (X ×A)k

OO

∼= // (X ×A)n+k

OO

Continuity of the top horizontal arrow follows from the following

Lemma 1.1 (Point-set topological lemma, (Strickland, 2.20)). If f1 : X1 −→ Y1 and f2 : X2 −→ Y2

are quotient maps, then so is the product f1 × f2.

Similarly, to see that the inverse is continuous, it is enough to see that the restriction
Bk(X,A) −→ Bk(X,A) is continuous. Again, we have the diagram

Bk(X,A) // Bk(X,A)

(X ×A)k

OO

∼= // (X ×A)k

OO

with both vertical maps quotient maps.

Remark 1.2. There is another way to think about the above construction, as a “tensor product of
functors”. Let F denote the category of finite sets. Then any space X determines a contravariant
functor X(−) : F −→ Top by X(n) = Map(n, X). If A is an abelian group, then A determines
a covariant functor A[−] : F −→ Top. The (discrete) space A[n] is ⊕nA, and given a function
φ : n −→ k, the map A[φ] is defined by

A[φ](a1, . . . , an) = (b1, . . . , bk), bi =
∑

j∈φ−1(i)

aj .

In general, given a contravariant functor G : Fop −→ Top and a covariant functor H : F −→ Top,
one can form their “tensor product” G⊗F H as the coequalizer (colimit) of the diagram∐

φ:n−→k

G(k)×H(n) // //
∐
n
G(n)×H(n) // G⊗F H

Taking G = X(−) and H = A[−], we get a topological space which can be identified with the space
B(X,A) from above.

To see how the above coequalizer works, consider the functions φ : 2 −→ 1 and ι1 : 1 ↪→ 2. Then
Xφ : X −→ X2 is the diagonal and A[φ] : A⊕ A −→ A is the addition. The coequalizer identifies
a point of the form (x, x, a1, a2) in X2×A[2] with the point (x, a1 + a2) in X ×A[1]. Similarly, the
map Xι1 : X2 −→ X is the projection onto the first factor, and A[ι1] : A −→ A ⊕ A is the map
a 7→ (a, 0). So the coequalizer will identify a point of the form (x1, x2, a, 0) in X2 × A[2] with the
point (x1, a) in X ×A[1].

What does all of this have to do with Eilenberg-Mac Lane spaces? The claim is that B(Sn, A)
will be a model for K(A,n). Actually, we modify the above construction slightly: if X is a based
space, then we define B̃(X,A) = B(X,A)/B(∗, A) as the functions taking value 0 at the basepoint.

2. Wed., Mar. 30

Note that B̃(X,A) is a covariant functor in the variable X. The cofiber sequence Sn−1 ↪→
Dn −→ Sn of spaces gives a sequence of topological abelian groups

B̃(Sn−1, A)
B(ι)−−→ B̃(Dn, A)

B(q)−−−→ B̃(Sn, A).

Claim. B̃(Sn−1, A) is the fiber of the map B(q) : B̃(Dn, A) −→ B̃(Sn, A).
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Proof. Suppose that B(q)(α) = B(q)(β). We can write α = αn−1 +αn, where αn−1 is supported on
Sn−1 and αn is supported on the interior of Dn. There is an analogous decomposition β = βn−1+βn.
The assumption that B(q)(α) = B(q)(β) means that αn = βn. Thus β − α = βn−1 − αn−1 comes
from B̃(Sn−1, A). �

Even better, this map is a quasi-fibration, in the sense that the fiber is weakly equivalent to the
homotopy fiber. One way to show this is to use the Dold-Thom technology (see Hatcher, Appendix
4K).
B̃(X,A) preserves based homotopy equivalences, so B̃(Dn, A) is contractible. It follows that

B̃(Sn−1, A) ' ΩB̃(Sn, A).

Lemma 2.1. If X is path-connected, then B(X,A) and B̃(X,A) are path-connected.

The space B̃(S0, A) is homeomorphic to A, and by induction we now deduce that B̃(Sn, A) is a
K(A,n).

Eilenberg-Mac Lane spaces and cohomology
By the Hurewicz theorem, we know that Hn(K(A,n); Z) ∼= A. The universal coefficients theorem

gives, for any X, a split exact sequence

0 −→ Ext1(Hn−1(X), A) −→ Hn(X;A) −→ Hom(Hn(X), A) −→ 0.

Taking X = K(A,n), then Hn−1(X) vanishes (if n ≥ 2), so that

Hn(K(A,n);A) ∼= Hom(Hn(K(A,n)), A) ∼= Hom(A,A).

In particular, the identity map of A corresponds to a distinguished element u ∈ Hn(K(A,n);A) ∼=
H̃n(K(A,n);A).

Let X be a based space. Then any based map f : X −→ K(A,n) induces a map

f∗ : H̃n(K(A,n);A) −→ H̃n(X;A).

Proposition 2.2. For any based CW complex X, the map [X,K(A,n)] −→ H̃n(X;A) sending f
to f∗(u) is a bijection (actually, an isomorphism of abelian groups).

Proof. We will write Y = K(A,n). Consider the commutative square, in which the horizontal maps
are induced by the inclusion Xn+1 ↪→ X of the (n+ 1)-skeleton of X:

[X,Y ] //

��

[Xn+1, Y ]

��
Hn(X;A) // Hn(Xn+1;A).

The bottom horizontal map is an isomorphism (this is clear from the cellular cochain complexes).
We claim that the top horizontal map is also a bijection.

For surjectivity, suppose given a map fn+1 : Xn+1 −→ Y . Can we extend fn+1 to a map
fn+2 : Xn+2 −→ Y ? On each (n+ 2)-cell, we already have a map to Y defined on the boundary of
the cell, and we need to know if this map on the boundary is null. But πn+1(Y ) = 0, so such a map
is necessarily null, and we can define the extension fn+2 on each cell. Clearly, the same argument
works to extend fn+1 all the way up the skeletal filtration of X.

Similarly, suppose we have a map f : X −→ Y such that the restriction to Xn+1 is null. Can we
extend the null homotopy to a null homotopy of f on X? We first consider and extension to Xn+2.
Again, it suffices to define the null homotopy on each cell. Glueing the map fn+2 on a given cell α
to the null homotopy h on the boundary ∂α defines a map Sn+2 −→ Y . Since πn+2(Y ) = 0, this
extends to a map Dn+2 −→ Y , i.e. a null homotopy of the map on the n+ 2-cell. Similarly, we can
extend the null homotopy over all higher cells, proving injectivity.
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We have thus reduced to the statement in the case that X = Xn+1 is of dimension n + 1. The
sorts of arguments we have just employed are closely related to “Obstruction Theory”, which we
will need in the remainder of the proof.

The first result from obstruction theory concerns the extension of a map fn : Xn −→ Y to a map
fn+1 : Xn+1 −→ Y . As we have just seen, what is needed is, for each attaching map α : Sn −→ Xn

for an (n + 1)-cell of X, a null homotopy for f ◦ α : Sn −→ Y . Here is another interpretation of
this statement: composition with f defines a map (homomorphism) Cn+1(X) −→ πn(Y ), i.e. an
(n + 1)-cochain c(f) ∈ Cn+1(X;πn(Y )). The map fn extends to fn+1 precisely when the cochain
c(f) vanishes.

Certainly, if X is (n + 1)-dimensional, the cochain c(f) is a cocycle, but this is in fact true in
general.

Proposition 2.3. There is a map g : Xn+1 −→ Y with g|Xn−1 = fn−1 if and only if the class [c(f)]
vanishes in Hn+1(X;πn(Y )).

We will give a proof of this statement next time. �

3. Fri, Apr. 1

We began to prove the following result:

Proposition 3.1. For any based CW complex X, the map [X,K(A,n)] −→ H̃n(X;A) sending f
to f∗(u) is a bijection (actually, an isomorphism of abelian groups).

Proof. Last time, we were able to reduce this to the case of X = Xn+1. Consider the cofiber
sequence

∨
Sn −→ Xn −→ Xn+1. This induces a commutative diagram

0 = [
∨
Sn+1, Y ] //

��

[Xn+1, Y ] //

��

[Xn, Y ] //

��

[
∨
Sn, Y ]

∼=
��

0 = H̃n(
∨
Sn+1;A) // H̃n(Xn+1;A) // H̃(Xn;A) // H̃n(

∨
Sn;A).

If we can show that [Xn, Y ] −→ H̃n(Xn;A) is an isomorphism, this will finish the proof. We will
do this by identifying both terms with a third set. Let JXn, Y K denote the set of homotopy classes,
rel Xn−2, of maps fn : Xn −→ Y such that fn−1 is constant at the basepoint of Y .

There is a natural map JXn, Y K −→ [Xn, Y ] which takes the class of f to the class of f . We first
establish that this natural map is surjective. Let f : Xn −→ Y . Since we may take a CW model
for Y in which the (n − 1)-skeleton is a point, the restriction of f to Xn−1 is null. Now we can
use the homotopy extension property with respect to the inclusion Xn−1 ↪→ Xn to extend the null
homotopy of fn−1 to a homotopy f ' g with gn−1 constant.

Injectivity of the map JXn, Y K −→ [Xn, Y ] takes a little more work, but we have already seen
the idea when we proved that a homotopy equivalence between nondegenerately based spaces is a
based homotopy equivalence. Suppose given a map f : Xn −→ Y such that fn−1 = ∗ and such that
f is null. Let h : f ' ∗ be the given null homotopy. We wish to find a null homotopy rel Xn−2.

Let us work for the moment at the level of the (n − 2)-skeleton Xn−2. We have the given
homotopy h : Xn−2 × I −→ Y , which is a possibly nonconstant homotopy between constant maps.
Define a map Xn−2 × ∂I2 −→ Y , where the map h is used on I × {0}, and the constant homotopy
is used on the rest of the boundary. Does this map extend to a map H : Xn−2× I2 −→ Y ? We are
trying to extend a map from an (n−1)-dimensional complex to an n-dimensional complex, and the
obstruction cochain lives in the group Cn(Xn−2 × I2, πn−1(Y )). The obstruction vanishes because
πn−1(Y ) = 0.

We may use the homotopy extension property to obtain a lift in the diagram
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Xn−2 × I

��

H // Y I

ev

��
Xn × I

h //

H̃

::u
u

u
u

u
Y

Then the concatenation H̃(1, t) ∗ H̃(s, 1) ∗ H̃(0, t) is a null homotopy for f that restricts to the
constant homotopy on Xn−2. This establishes the isomorphism JXn, Y K ∼= [Xn, Y ].

It remains to compare JXn, Y K to H̃n(Xn;A). Note that since Xn is n-dimensional, every n-
cochain is a cocycle. To proceed further, we will need to return once again to obstruction theory.

The second result from obstruction theory concerns a pair of maps f, g : Wn −→ Z such that
fn−1 = gn−1. On an n-cell of Wn, the maps f and g specify two maps Dn −→ Z which agree on
the boundary. Glueing these together defines a map Sn −→ Z. This map Cn(W ) −→ πn(Z) is the
“difference cochain” d(f, g) ∈ Cn(W ;πn(Z)). We will need the following facts about the difference
cochain construction:

• ∂d(f, g) = c(f)− c(g)
• d(f, g) + d(g, h) = d(f, h). It is clear that the maps f and g are homotopic rel Wn−1 if and

only if this difference cochain vanishes, but once again there is a cohomological criterion:

Proposition 3.2. Suppose given maps f, g : W −→ Z such that fn−1 = gn−1. Then
fn ' gn rel Wn−2 if and only if [d(f, g)] = 0 in H̃n(W ;πn(Z)).

Returning to the proof, to a map f : Xn −→ Y which is constant on Xn−1, we associate the
class d(f, ∗) ∈ Cn(Xn;πn(Y )). Suppose that [d(f, ∗)] = [d(g, ∗)] for some other g ∈ JXn, Y K. By
the above additivity result, this is equivalent to the statement [d(f, g)] = 0. But this is precisely
the obstruction to the existence of a homotopy f ' g rel Wn−2, so we have injectivity.

Let v ∈ H̃n(Xn;A), and let z be a representing cocycle for the class v. We want to write
v = [d(f, ∗)] for some f : Xn −→ Y which is constant on Xn−1. But the quotient Xn/Xn−1 is a
wedge

∨
Sn indexed by the n-cells of X, and we take the map

∨
Sn −→ Y specified by z(α) on the

summand corresponding to an n-cell α. By construction, d(f, ∗) = z, so we are done. �

To remove a bit of the mystery, let’s prove the first obstruction theory result from last time:

Proposition 3.3. Let Y be a connected simple space, and suppose given a map f : Xn −→ Y .
There is a map g : Xn+1 −→ Y with g|Xn−1 = fn−1 if and only if the class [c(f)] vanishes in
Hn+1(X;πn(Y )).

The simple assumption is there to make sure we don’t have to worry about choices of basepoints
for Y .

Proof. (⇒) Suppose that we have g : Xn+1 −→ Y . Thus the cochain c(gn) vanishes. But fn−1 =
gn−1, so we may form d(f, g) ∈ Cn(X;πn(Y )) with ∂d(f, g) = c(f)− c(g) = c(f). Thus the cocycle
c(f) is a coboundary, so the class [c(f)] vanishes.

(⇐) Suppose that there is d ∈ Cn(X;πn(Y )) with ∂(d) = c(f). Then we build a map g :
Xn −→ Y such that gn−1 = fn−1 and d = d(f, g). On each n-cell Φ : Dn −→ Xn, the map

g is defined so that the resulting map Sn
f∪g−−→ Y is (a representative for) d(Φ) ∈ πn(Y ). Then

c(f) = ∂d = ∂d(f, g) = c(f)− c(g), so c(g) = 0. Thus g extends to Xn+1. �
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