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1. Mon, Apr. 11

Last time, we proved Moore’s result that topological abelian monoids split as products of
Eilenberg-Mac Lane spaces. It is worth emphasizing that all of the hypotheses are needed. For
instance, S3 is a non-abelian topological group. Let’s show that it has some nontrivial k-invariants.

The Postnikov tower for S3 begins
P4(S3)

��

S3

77oooooooooooooo //

''OOOOOOOOOOOOOO P3(S3) = K(Z, 3)
k3 //

��

K(Z/2.5)

P1(S3) = P2(S3) = ∗
It turns out that H5(K(Z, 3); Z/2) ∼= Z/2, so the k-invariant k3 is either the nontrivial class or the
trivial class. Suppose k3 = 0. If yes, then

P4(S3) ' K(Z, 3)×K(Z/2, 4).

Let’s consider homology. P4(S3) is built from S3 by attaching cells of dimension 6 and greater. It
follows that H4(P4(S3)) ∼= H4(S3) = 0. But

H4(K(Z, 3)×K(Z/2, 4)) ∼= Z/2 6= 0.

It follows that k3 must be nontrivial.

Localization and Completion
We now turn to a convenient calculational framework. Most computations in homotopy theory

these days are done “one prime at a time”.
Let’s begin with localization of abelian groups. Let p be a fixed prime (we allow p = 0). We

say an abelian group A is p-local if it is a Z(p)-module. This is equivalent to requiring that, for all

primes q 6= p, multiplication by q, A
q·−→ A is an isomorphism.

Example 1.1. The basic examples are A = Z(p) and A = Fp.

Definition 1.2. A localization at p of an abelian group A is a universal map A
φ−→ A(p) such that

A(p) is p-local.

The map A −→ A⊗ Z(p) satisfies the universal property and is thus the localization.
Let BA denote a space of the homotopy type BA ' K(A, 1).

Theorem 1.3. The localization map φ : A −→ A(p) induces an isomorphism

H∗(BA; Z(p))
∼=−→ H∗(BA(p); Z(p)).
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If A is p-local then

H̃∗(BA; Z)
∼=−→ H̃∗(BA; Z(p))

is an isomorphism.

Proof. We will show this for A = Z/q or A = Z.
Let’s start with A = Z. Then BA ' S1. What is BA(p)? Here is one construction of A(p) for

any A. Enumerate the primes qi different from p. Define r1 = q1, r2 = r1 · q1q2, r3 = r2 · q1q2q3,
etc. Then

A(p)
∼= colim

n
(A r1−→ A

r2−→ A
r3−→ A

r4−→ . . . ).

In analogy, we define

Y = hocolim
n

(S1 r1−→ S1 r2−→ S1 r3−→ S1 r4−→ . . . ).

One can then use the Van Kampen theorem to deduce that π1(Y ) ∼= π1(Y )(p). Also, πn(Y ) = 0 for
n > 1 since any map Sn −→ Y must land in a finite stage of the homotopy colimit. So Y ' BA(p).
Finally, H(−; Z(p)) commutes with (homotopy) colimits, so the map on homology is

H̃∗(BA; Z(p)) −→ H̃∗(hocolim
n

BA; Z(p)) ∼= colim
n

H̃∗(BA; Z(p)).

But the maps rn : H̃1(BA; Z(p)) −→ H̃1(BA; Z(p)) are all isomorphisms, so we are done.
Now let A = Z/q. The statement is clear if q = p, so assume q 6= p. Then A(p) = 0, so we will

need to show that H̃∗(BA; Z(p)) = 0. If q = 2, then BA ' RP∞ and

H̃n(BA; Z) ∼=
{

Z/2 n odd
0 else.

Similarly, if q is odd, BA is a Lens space, and

H̃n(BA; Z) ∼=
{

Z/q n odd
0 else.

Universal coefficients now says that

H̃n(BA; Z(p)) ∼= H̃n(BA; Z)⊗ Z(p) ⊕ Tor(H̃n−1(BA; Z),Z(p)).

The Tor group vanishes since Z(p) is flat. Again, we win since Z/q ⊗ Z(p)
∼= 0 if q 6= p.

For the second statement, if A = Z/p, then all nonzero groups H̃∗(BA; Z) are p-local, so we are
done. If A = Z(p), the above computation shows that

H̃∗(BZ(p); Z) ∼= H̃∗(BZ; Z)⊗ Z(p),

so H̃∗(BZ(p); Z) is already p-local. �

The following statement now follows from universal coefficients.

Corollary 1.4. The induced map

H∗(BA(p);M) −→ H∗(BA;M)

is an isomorphism for all p-local M .
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2. Wed., Apr. 13

Last time we discussed localization of abelian groups and the classifying spaces of p-local abelian
groups. Again, p is a fixed prime.

Definition 2.1. (1) We say that a map of space f : X −→ Y is a p-equivalence if

f∗ : H∗(X; Z(p))
∼=−→ H∗(Y ; Z(p))

is an isomorphism.
(2) We say Z is p-local if for all p-equivalences f : X −→ Y , the induced map

f∗ : [Y,Z] −→ [X,Z]

is a bijection.
(3) A p-localization of X is a map X

φ−→ X(p) that is a p-equivalence and such that X(p) is
p-local.

Remark 2.2. The definition of p-equivalence is equivalent to requiring that H∗(Y ;M) −→
H∗(X;M) is an isomorphism for all p-local M .

In fact, more generally, for any PID R, a map f : X −→ Y induces an isomorphism H∗(X;R) −→
H∗(Y ;R) if and only if it induces isomorphisms H∗(Y ;M) −→ H∗(X;M) for all R-modules M . The
forward implication is a simple application of universal coefficients. For the reverse implication,
let C = cofib(f) and consider the R-module M = Hn(C;R). Then universal coefficients gives an
isomorphism

Hn(C;M) ∼= Hom(Hn(C;R),M)⊕ Ext1(Hn−1(C;R),M).
Assuming that f induces a cohomology isomorphism, it follows that Hn(C;M) = 0. In particular,

Hom(Hn(C;R),M) = Hom(Hn(C;R),Hn(C;R)) = 0,

so Hn(C;R) must be 0. Since this is valid for all n, we may deduce that H∗(X;R) −→ H∗(Y ;R) is
an isomorphism.

Remark 2.3. It follows from the definition that the p-localization of a space is unique (up to
homotopy). For suppose φ1 : X −→ X(p) and φ2 : X −→ X ′(p) are both p-localizations. Then, since
X ′(p) is p-local, the p-equivalence φ1 induces a bijection

φ∗1 : [X(p), X
′
(p)]

∼=−→ [X,X ′(p)].

Thus there must be a map ψ : X(p) −→ X ′(p) such that ψ ◦φ1 ' φ2. Reversing the roles of X(p) and
X ′(p), we get a map in the other direction, and the fact that X(p) and X ′(p) are p-local allows us to
deduce that they are homotopy inverses.

Proposition 2.4. An abelian group A is p-local if and only if the space BA is p-local.

Proof. (⇒) Let f : X −→ Y be a p-equivalence. Then, by the definition of p-equivalence, the
bottom horizontal map in the diagram

[Y,BA] //

∼=
��

[X,BA]

∼=
��

H1(Y ;A)
∼= // H1(X;A)

is an isomorphism. It follows that BA is p-local.
(⇐) Clearly the identity map id : BA −→ BA is a p-localization if BA is already p-local. Now

let ϕ : A −→ A(p) be an algebraic p-localization. Then we saw last time that BA −→ B(A(p)) is a
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p-equivalence. By the implication already shown, we know B(A(p)) is p-local, so BA −→ B(A(p))
is also a p-localization. It follows that BA ' B(A(p)), so that A ∼= A(p). �

More generally, the following is true.

Theorem 2.5. For any abelian group A and n ≥ 0, the map K(A,n) −→ K(A(p), n) is a p-
localization.

So far, we have only given the construction of X(p) in limited cases, namely when X = BA.

Theorem 2.6. Any simple space X admits a p-localization.

Proof. The main idea is to replace X be a (principal) Postnikov tower. We will show by induction
that the nth stage Pn(X) admits a p-localization.

At the bottom (assuming X connected), we have X −→ K(π1(X), 1). We have just shown that
K(π1(X)(p), 1) is a model for K(π1(X), 1)(p). Assume thus that we have already built a localization
Pn(X)(p). Consider the following diagram:

K(πn+1X,n+ 1)
Ωφn //

��

K(πn+1(X)(p), n+ 1)

���
�
�

Pn+1(X)
Φn+1 //________

��

Pn+1(X)(p)

���
�
�

Pn(X)
Φn //

kn

��

Pn(X)(p)

(kn)(p)

���
�
�

K(πn+1(X), n+ 2)
φn

// K(πn+1(X)(p), n+ 2)

The map (kn)(p) exists since Φn is a p-equivalence and since K(πn+1(X)(p), n + 2) is p-local. The
space Pn+1(X)(p) is then defined to be the fiber of (kn)(p).

It remains to show that Φn+1 is a p-localization. The fact that Φn+1 is a p-equivalence is
an easy spectral sequence argument, given that Φn and φn are p-equivalences. The fact that
Pn+1(X)(p) is p-local follows from a “dual Whitehead” result. Recall that we can think of Postnikov
towers as cocellular objects, built using homotopy limits out of cocells (Eilenberg-Mac Lane spaces).
The analogue of a weak equivalence in this context (determined by mapping cells in) is an H∗-
isomorphism (determined by mapping to cocells). Since we are using only p-local cocells (that is,
K(A,n) with A p-local), the relevant H∗-isomorphisms are precisely the p-equivalences. Dualizing
the arguments used to prove the Whitehead theorem for CW complexes (that is, one should prove
a coHELP theorem, etc.) one gets precisely the statement that cocellular objects are p-local.

By induction, we have now produced a p-localization Pn(X) −→ Pn(X)(p) in such a way that the
Pn(X)(p) assemble into a tower, and we define X(p) := holimn Pn(X)(p). Again, the dual Whitehead
theorem says that this is indeed a p-local space. That the map Hn(X; Z(p)) −→ Hn(X(p); Z(p)) is
an isomorphism follows from the fact that, for i ≥ n, the map

Hn(Pi(X); Z(p)) −→ Hn(Pi(X)(p); Z(p))

is an isomorphism. �

It turns out that there is also a very convenient description of p-local spaces, given by the
following result.

Theorem 2.7. Let X be simple. Then the following are equivalent
(1) X is p-local
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(2) πn(X) is p-local for all n
(3) H̃n(X; Z) is p-local for all n.

Proof. Today, we will only have time to show (1) ⇐⇒ (2). Given our construction of localizations
using Postnikov towers, this equivalence follows from the following:

Lemma 2.8. X is p-local ⇐⇒ X
∼−→ X(p).

Proof. (⇒) X and X(p) are both p-localizations, so X ' X(p) by the uniqueness of localizations.
(⇐) If Y −→ Z is a p-equivalence, then all maps in the following diagram are known to be

bijections save for the top horizontal one
[Z,X] //

∼=
��

[Y,X]

∼=
��

[Z,X(p)]
∼= // [Y,X(p)].

�

We will show (1) ⇐⇒ (3) next time. �

3. Fri, Apr. 15

Last time, we proved the equivalence (1) ⇐⇒ (2) of the following theorem.

Theorem 3.1. Let X be simple. Then the following are equivalent
(1) X is p-local
(2) πn(X) is p-local for all n
(3) H̃n(X; Z) is p-local for all n.

Now it’s time to finish the job.

Proof. (1)⇒ (3) Assume X is p-local. We will prove by induction on j that H̃n(PjX; Z) is p-local
for all n.

When j = 1, we have P1X = K(π1(X), 1), and we have already shown that H̃n(K(π1(X), 1); Z)
is p-local if π1(X) is p-local. Now assume that H̃n(PjX; Z) is p-local for all n. The Serre spectral
sequence for the fiber sequence

K(πj+1(X), j + 1) −→ Pj+1X −→ PjX

has E2-term Hp(Pj(X); Hq(K(πj+1(X), j + 1); Z)) and converges to Hp+q(Pj+1X; Z).This maps
to the spectral sequence for computing the homology with coefficients in Z(p), and the map on
E2-terms is an isomorphism by assumption. We conclude that the map

H̃∗(Pj+1(X); Z) −→ H̃∗(Pj+1(X); Z(p))

is an isomorphism.
(3) ⇒ (1). We wish to show that the map X −→ X(p) is an equivalence. But all maps in the

following diagram except the top horizontal one are known to be isomorphisms:

H̃∗(X; Z) //

∼=
��

H̃∗(X(p); Z)

∼=
��

H̃∗(X; Z(p))
∼= // H̃∗(X(p); Z(p))

Since X is simple, it follows by the Whitehead theorem that X ∼−→ X(p). �
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When p = 0, p-local homotopy theory is known as “rational homotopy theory”. We will use
this to prove Serre’s theorem on the finiteness of homotopy groups of spheres. We begin with the
following computation.

Proposition 3.2. Let zn ∈ Hn((K(Q, n); Q) be the canonical class, corresponding to the identity
K(Q, n) −→ K(Q, n). Then H∗(K(Q, n); Q) is the free graded-commutative Q-algebra on the class
zn. When n is even, this means the polynomial algebra Q[zn], and when n is odd, it is the exterior
algebra Q[zn]/z2

n.

Proof. We will prove this by induction. Let n = 1. Then we know S1 = K(Z, 1) −→ K(Q, 1) is
rationalization, so

H(K(Q, 1); Q) ∼= H∗(S1; Q) ∼= Q[z1]/z2
1 .

Assume now that K(Q, n) has cohomology algebra as described as in the statement. Consider the
path-loop fiber sequence

K(Q, n) −→ PK(Q, n+ 1) −→ K(Q, n+ 1).

We treat the n even and n odd cases separately.
n odd: Since K(Q, n) has no cohomology in degrees 0 < i < n and since PK(Q, n + 1) has no

cohomology at all, we see that dn+1(zn) = zn+1. The class znzn+1 cannot survive to E∞ and it
cannot be the target of any differential. The only possibility is that dn+1(znzn+1) is nonzero. The
Leibniz rule tells us that

dn+1(znzn+1) = d(zn)zn+1 + (−1)nznd(zn+1) = z2
n+1.

More generally, dn+1(znz
j
n+1) = (zn+1)j+1, so (zn+1)j+1 must be nonzero for every j. Moreover,

there is no room for more classes in H∗(K(Q, n+ 1); Q), as they would survive to E∞.
n even: Again, we see that dn+1(zn) = zn+1. But this time, dn+1(z2

n) = znzn+1, so znzn+1

does not support any differentials. More generally, dn+1(zjn) = zj−1
n zn+1. It follows that En+2

is concentrated on the bottom row. This row cannot have any classes, and we conclude that
K(Q, n+ 1) must have nontrivial cohomology only in degree n+ 1. �

Theorem 3.3 (Serre). The homotopy groups πk(Sn) are finite except for πn(Sn) ∼= Z, n ≥ 1, and
π4n−1(S2n) ∼= Z⊕ finite, n ≥ 1.

Proof. Let α : Sn −→ K(Z, n) correspond to a generator. The fiber Sn〈n〉 is the “n-connected
cover of Sn”. It has the same homotopy groups as Sn in degrees > n but no homotopy in degrees
≤ n. Consider the diagram

K(Z, n− 1) //

��

Sn〈n〉 //

���
�
� Sn

α //

��

K(Z, n)

��
K(Q, n− 1) // F // Sn(0)

α(0)//___ K(Q, n).
The map α(0) exists because Sn −→ Sn(0) is a rational equivalence and K(Q, n) is rational (i.e.

0-local). The space F is defined to be the fiber of α(0). The same techniques we have used before
show that F ' Sn〈n〉(0).

We have already seen that when n is odd, the map Sn −→ K(Q, n) is rationalization. Thus α(0)

is an equivalence, and F ' ∗. It follows that for all k > n, πk(Sn) ⊗ Q = 0. This tells us that
πk(Sn) is a torsion group. To conclude that it is finite, we must cite another result of Serre.

Theorem 3.4 (Serre). Let X be simply connected. Then πn(X) is finitely generated for all n if
and only if Hn(X; Z) is finitely generated for all n.

We will handle the n even case next time. �
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