Math 651 - Topology II Homework IV Spring 2014

- 1. Show that if $p : E \longrightarrow B$ is a covering and $A \subseteq B$ is any subspace, then the restriction of p gives a covering $p^{-1}(A) \longrightarrow A$.
- 2. (a) Show that any covering map $p : E \longrightarrow B$ is a quotient map.
 - (b) Show that if *E* is very connected, so is *B*.
 - (c) Suppose that *E* is very connected. Show that if $p^{-1}(b_0)$ has *k* elements for some $b_0 \in B$, this must be true for all $b \in B$. Such a covering is called a *k*-sheeted covering of *B*.
- 3. (a) Show that if $p_1 : E_1 \longrightarrow B_1$ and $p_2 : E_2 \longrightarrow B_2$ are covering maps, then so is $p_1 \times p_2 : E_1 \times E_2 \longrightarrow B_1 \times B_2$.
 - (b) Use this to compute $\pi_1(T^2)$. (Of course, we already know the answer from problem 2 of Homework II.)
- 4. Suppose *G* acts on a space *X*. We say the action is **free** if gx = x only for g = e. We say the action is **proper discontinuous** if every $x \in X$ has a neighborhood *U* such that *U* meets g(U) only for finitely many $g \in G$.

Show that if *G* acts freely and properly disontinuously on a Hausdorff space *X*, then $X \longrightarrow X/G$ is a covering map.

5. (*) Find a simply connected covering of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.