Math 651 - Topology II Homework VI Spring 2014

- 1. Show that any two simply-connected covers of *B* are homeomorphic. (Hint: Use the lifting lemmas!)
- 2. Let $p : E \longrightarrow B$ be a covering. Use Theorem 16.5 from class to determine the group Aut(*E*) of deck transformations of *E*. (Hint: Use Proposition 16.3 from class to determine the group of *G*-equivariant automorphisms of any *G*-set.)
- 3. Let $p : E \longrightarrow B$ be a covering. Pick $e_0 \in E$ and let $b_0 = p(e_0)$. Show that $p_*(\pi_1(E, e_0)) \leq \pi_1(B, b_0)$ is normal if and only if for every point $f \in F$, there is a deck transformation $\varphi : E \longrightarrow E$ such that $\varphi(e_0) = f$.
- 4. Let $q : X \longrightarrow B$ be a simply-connected covering. We showed in class that $Aut(X) \cong G = \pi_1(B)$. This gives an action of *G* on *X*, and this action restricts to an action on any fiber. But also discussed a *G*-action on the fiber for any covering.
 - (a) Let $q : \mathbb{R}^2 \longrightarrow S^1 \times S^1$ be the universal covering of the torus. Show the two above actions are the same.
 - (b) Let $q : X \longrightarrow S^1 \lor S^1$ be the (fractal) simply-connected covering discussed in class. Show that in this case the two actions *do not* coincide! (Hint: Denote by α and β the loops around the two circles in $S^1 \lor S^1$. Determine (carefully) the action of $\alpha\beta$ on a point in the fiber under the two described actions.)
- 5. (*) Find a free action of the cyclic group C_6 on the sphere S^3 , and let $B = S^3/C_6$ be the quotient. Find all covers of *B* and determine all maps of coverings between them.
- 6. (*) Think of \mathbb{R}^4 as the ring \mathbb{H} of quaternions, so that S^3 corresponds to the unit quaternions. Then the standard unit vectors $\{\pm 1, \pm i, \pm j, \pm k\}$ form the quaterion group Q_8 of order 8. Let $B = S^3/Q^8$, and find all covers and maps between them as in the previous problem.