Math 651 - Topology II Homework VII Spring 2014

- 1. (*a*) Show that in the Hawaiian earring (Example 22.1 in the notes), the point (0,0) is **not** a nondegenerate basepoint. In other words, show that no neighborhood of (0,0) deformation retracts onto (0,0).
 - (*b*) If no basepoint of *X* is nondegenerate, there is a way of adding in a good basepoint without changing the homotopy type. The process, known as "attaching a whisker to *X*", is to consider the space $X \vee I$. If we glue *I* to *X* along the point $0 \in I$, show that $1 \in I$ is a nondegenerate baspoint for $X \vee I$.
 - (*c*) Show that $X \vee I$ is homotopy equivalent to *X*.
- 2. Use the van Kampen theorem to show that S^n is simply-connected if $n \ge 2$.
- 3. Let *x* and *y* be any two (distinct) points in \mathbb{R}^3 . Use the van Kampen theorem to compute $\pi_1(\mathbb{R}^3 \{x, y\})$.
- 4. Let *X* be \mathbb{R}^3 with two of the coordinate axes removed. Compute $\pi_1(X)$. (**Hint:** Start by showing that *X* is homotopy equivalent to S^2 with four points removed.)
- 5. (*) Let $X \subseteq \mathbb{R}^3$ be the union of S^2 and a diameter through the north and south poles. Find $\pi_1(X)$.