Math 651 - Topology II Homework VIII Spring 2014

- 1. Find $\pi_1(\mathbb{RP}^2 \{x, y\})$, where $x \neq y$. (Hint: First find $\pi_1(\mathbb{RP}^2 \{z\})$.)
- 2. (Möbius band) Let M be the quotient of I^2 obtained by identifying *one* pair of opposite edges via a twist (no glueing is performed on the other edges).
 - (a) Show that $M \simeq S^1$.
 - (*b*) Describe a CW structure on *M* and find $\chi(M)$.
 - (*c*) Your CW structure on *M* in part (b) should give you a description of $\pi_1(M)$. How does this agree with (a)?
- 3. Let *X* be the quotient of S^2 obtained by identifying the north and south poles to a single point. Put a CW structure on *X* and use this to compute $\pi_1(X)$.
- 4. Give a purely algebraic argument to show that the groups with presentations

$$G_1 = \langle a, b \mid abab^{-1} \rangle, \qquad G_2 = \langle c, d \mid c^2 d^2 \rangle$$

are isomorphic.

- 5. (\star) Let X and Y be finite CW complexes.
 - (*a*) Use the cell structures on *X* and *Y* to put a cell structure on $X \times Y$. (Hint: It may help to use that $S^{m+n-1} \cong (S^{m-1} \times D^n) \cup_{S^{m-1} \times S^{n-1}} (D^m \times (S^{n-1}))$.) Don't worry about proving the (C) and (W) properties. The discussion in Problem 9.5.2 from last semester may be helpful.
 - (*b*) Use this to deduce a formula for $\chi(X \times Y)$ in terms of $\chi(X)$ and $\chi(Y)$.