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1. Wed, Jan. 15

Here are a list of main topics for this semester:

(1) homotopy, homotopy equivalence (Hatcher - Ch. 0, Ch. 1.1; Lee - Ch. 7)
(2) the fundamental group (topology  algebra) (Hatcher - Ch. 1.1; Lee - Ch. 7, Ch. 8)
(3) the theory of covering spaces (Hatcher - Ch. 1.3; Lee - Ch. 11, Ch. 12)

Example 1.1.
(a) What spaces cover R? Only R itself. Every covering map E �! R is a homeomorphism.
(b) What spaces cover S1? There is the n-sheeted cover of S1 by itself, for any nonzero

integer n. (Wrap the circle around itself n times.) There is also the exponential map
R �! S1.

(c) What spaces cover S2? Only S2 itself. Every covering map E �! S2 is a homeomor-
phism.

(d) What spaces cover RP2? There is the defining quotient map S2 �! RP2 and the
homeomorphisms.

(4) computation of the fundamental group via the Seifert-van Kampen theorem. (Hatcher -
Ch. 1.2, Lee - Ch. 9, Ch. 10)

(5) classification of surfaces (compact, connected) and the Euler characteristic. (Lee - Ch. 6,
Ch. 10)

(6) homology of CW complexes (Hatcher - Ch. 2.1, Lee - Ch. 13)

The fundamental group, an algebraic object, will turn out to be crucial for understanding topics
in geometric topology (coverings, surfaces).

? ? ? ? ? ? ??
                 

? ? ? ? ? ? ??

One of the main questions in topology is that of distinguishing topological spaces. Often, this is
done by finding a topological property that one, but not both, of the spaces in question possesses.
For example, R is not homeomorphic to S1 since the latter is compact, whereas the former is not.
Similarly, I = [0, 1] is not homeomorphic to S1 since the former can be disconnected by removing
a point, whereas the latter cannot. But this is a tough row to hoe. Neither of the above criteria
su�ce to distinguish S2, RP2, and T 2 = S1 ⇥ S1. The notion of homotopy will give us another
means of distinguishing spaces.
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Definition 1.2. Given maps f and g : X �! Y , a homotopy h between f and g is a map
h : X ⇥ I �! Y (I = [0, 1]) such that f(x) = h(x, 0) and g(x) = h(x, 1). We say f and g are
homotopic if there exists a homotopy between them (and write h : f ' g).

Example 1.3. Let f = id : R �! R and take g : R �! R to be the constant map g(x) = 0. Then
a homotopy h : f ' g is given by

h(x, t) = x(1� t).

Check that h(x, 0) = f(x) and h(x, 1) = g(x). Since f is homotopic to a constant map, we say that
f is null-homotopic (and h is a null-homotopy).

Example 1.4. Consider f = id : S1 �! S1 and the map g : S1 �! S1 defined by
g(cos(✓), sin(✓)) = (cos(2✓), sin(2✓)). Thinking of S1 as the complex numbers of unit norm, the
map g can alternatively be described as g(z) = z2. Then the maps f and g are not homotopic.
Furthermore, neither is null-homotopic. (Though we won’t be able to show this for a couple of
weeks.)

Proposition 1.5. The property of being homotopic defines an equivalence relation on the set of
maps X �! Y .

Proof. (Reflexive): Need to show f ' f . Use the constant homotopy defined by h(x, t) = f(x)
for all t.

(Symmetric): If h : f ' g, we need a homotopy from g to f . Define H(x, t) = h(x, 1� t) (reverse
time).

(Transitive): If h1 : f1 ' f2 and h2 : f2 ' f3, we define a new homotopy h from f1 to f3 by the
formula

h(x, t) =

⇢
h1(x, 2t) 0  t  1/2

h2(x, 2t� 1) 1/2  t  2.

⌅

We write [X,Y ] for the set of homotopy classes of maps X �! Y .

Proposition 1.6. (Interaction of composition and homotopy) Suppose given maps X
f�! Y

g�! Z

and X
f 0
�! Y

g0�! Z. If f ' f 0 and g ' g0 then g � f ' g0 � f 0.

Proof. We will show that g � f ' g0 � f . The required homotopy is given by

H(x, t) = h0(f(x), t).

It is easily verified that H(x, 0) = g�f(x) and H(x, 1) = g0�f(x). Why is the map H : X⇥I �! Z
continuous? It is the composition of the continuous maps

X ⇥ I
f⇥id���! Y ⇥ I

h0
�! Z.

That the map f ⇥ id is continuous can be easily verified using the universal property. If you are
not familiar with this, consult Theorem 10.2 from the fall semester course notes. ⌅
Definition 1.7. A map f : X �! Y is a homotopy equivalence if there is a map g : Y �! X
such that both composites f � g and g � f are homotopic to the identity maps. We say that spaces
X and Y are homotopy equivalent if there exists some homotopy equivalence between them,
and we write X ' Y .

Remark 1.8. It is clear that any homeomorphism is a homotopy equivalence, since then both
composites are equal to the idenitity maps.
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2. Fri, Jan. 17

Last time, we introduced the related notions of homotopy and homotopy equivalence. We ended
by saying that every homeomorphism is a homotopy equivalence. The following example shows
that the converse is not true.

Example 2.1. The (unique) map f : R �! ⇤, where ⇤ is the one-point space, is a homotopy
equivalence. Pick any map g : ⇤ �! R (for example, the inclusion of the origin). Then f � g = id.
The other composition g � f : R �! R is contant, but we have already seen last time that the
identity map of R is null-homotopic. So R ' ⇤. The same argument works equally well to show
that Rn ' ⇤ for any n. Even more generally, if X is a convex subset of Rn, then X ' ⇤.

Here’s some more terminology: any space that is homotopy-equivalent to the one-point space
is said to be contractible. As we have just seen in the example above, this is equivalent to the
statement that the identity map is null-homotopic.

We will see later that the spaces S2, RP2, and T 2 are not homotopy-equivalent (and therefore
not homeomorphic).

Homotopy of paths

Recall that a path in a space X is simply a continuous map � : I �! X.
It will turn out to be fruitful to study homotopy-classes of paths in a space
X. But this is not very interesting if we don’t impose additional restrictions:
every path is null! A contracting homotopy for the path � is given by

H(s, t) = �(s(1� t)).
We need to modify our notion of homotopy to get an interesting relation for paths.

Definition 2.2. Let �1 and �2 be paths in X with the same initial and end points. A path-
homotopy between �1 and �2 is simply a homotopy h such that at each time t, the resulting path
h(�, t) also has the same initial and end points as �1 and �2.

Another way to think about this is that a path homotopy is a map from
the square I ⇥ I that is constant on the left vertical edge and also on the
right vertical edge.

Example 2.3. The two paths �1(s) = ei⇡s and �2(s) = e�i⇡s are path-homotopic in R2. A
homotopy is given by h(s, t) = (1 � t)�1(s) + t�2(s). This is the straight-line homotopy. For
example, when we restrict to s = 1/2, the homotopy gives the vertical diameter of the circle.

On the other hand, we could also consider these as paths in R2 � {(0, 0)} or as paths in S1. We
will see later that these are not path-homotopic in either of these spaces.

Proposition 2.4. Given two points a and b in X, path-homotopy defines an equivalence relation
on the set of paths from a to b.

A path in X that begins and ends at the same point is called a loop in X. We call the
starting/end point the basepoint of the loop (and often of X as well). By the above proposition,
path-homotopy defines an equivalence relation on the set of loops in X with basepoint x0. The
set of equivalence classes is denoted ⇡1(X,x0) and is called the fundamental group of X (with
basepoint x0). Of course, so far we have no reason to call this a group, we only know this as a set.

Example 2.5. Use of straight-line homotopies show that ⇡1(Rn, x) = {cx} for any n and x. More
generally, ⇡1(X,x) = {cx} for any convex subset of Rn. This holds even more generally for any
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star-shaped region in Rn. A subset X ⇢ Rn is said to be star-shaped around x if for any y 2 X,
the straight-line segment xy is contained in X.

Here is a slightly di↵erent perspective on loops. Since a loop is a map � : I �! X that is
constant on the subspace @I = {0, 1} ✓ I, there is an induced map from the quotient space
� : I/@I �! X. Recall that I/@I is homeomorphic to the circle S1. So a loop in X is the same as
a map � : S1 �! X.

A based map between two spaces with chosen basepoints is simply a map that takes the
basepoint of one space to the basepoint of the other. By a based homotopy, we mean a homotopy
through based maps (so the homotopy is constant on the basepoint). Based homotopy defines an
equivalence relation on the set of based maps, and the set of based homotopy classes is denoted

[(X,x0), (Y, y0)]⇤.

It is customary to take (1, 0) as the basepoint for S1, and path-homotopy classes of loops in X,
based at x0, correspond to based homotopy classes of maps S1 �! X. So

⇡1(X,x0) ⇠= [(S1, (1, 0)), (X,x0)]⇤.

Where does the group structure on homotopy classes of loops come from? Well, you can con-
catenate paths, by traveling first along one and then along the other.

Definition 2.6. Let � and � be paths in X. We say the two paths are composable in X if
�(1) = �(0). When this is the case, we define the concatenation of � and � to be the path

� · �(s) =
⇢

�(2s) s 2 [0, 1/2]
�(2s� 1) s 2 [1/2, 1].

This formula looks familiar, right? This was the one used in Proposition 1.5 to glue two ho-
motopies together. This is no accident: a path is precisely a homotopy between two constant
maps!

Concatenation will provide the group structure on ⇡1(X), as we will investigate next time.
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