
29. Mon, Mar. 31

Last time we were discussing the torus, and we arrived at ⇡1(T 2) ⇠= F (a, b)/haba�1b�1i. Here is
a proof that this is isomorphic to Z2.

Proposition 29.1. The natural map ' : F (a, b) �! Z2 defined by '(a) = (1, 0) and '(b) = (0, 1)
induces an isomorphism

F (a, b)/haba�1b�1i ⇠= Z2.

Proof. Let K = ker(') and let N E F (a, b) be the normal subgroup generated by aba�1b�1. By
the First Isomorphism Theorem, F (a, b)/K ⇠= Z2, so it su�ces to show that N = K. It is clear
that N  K. Since N E K, we wish to show that the quotient group K/N is trivial. Let g =
an1bk1an2b

k2an3 2 K/N . In K/N , we have ab = ba, so

an1bk1an2bk2an3 = an1+n2+n3bk1+k2 .

Since g 2 K, we have n1 + n2 + n3 = 0 and k1 + k2 = 0, so g = e in K/N . ⌅

Our CW structure had a single 0-cell, two 1-cells, and a single 2-cell, so we find that the Euler
characteristic is

�(T 2) = 1� 2 + 1 = 0.

Example 29.2. (Klein bottle) One definition of the Klein bottle K is as the quotient of I2 in
which one opposite pair of edges is identified with a flip, while the other pair is identified without
a flip. This leads to the computation

⇡1(K) ⇠= F (a, b)/haba�1bi.

For certain purposes, this is not the most convenient description. Cut the square along a diagonal
and repaste the triangles along the previously flip-identified edges. The resulting square leads to
the computation

⇡1(K) ⇠= F (a, c)/ha2c2i.

The equation c = a�1b allows you to go back and forth between these two descriptions.
Like the torus, the resulting cell complex has a single 0-cell, two 1-cells, and a single 2-cell, so

�(K) = 1� 2 + 1 = 0.

The next example is not obtained by attaching a cell to S1 _ S1.

Example 29.3. If we glue the boundary of I2 according to the relation abab, the resulting space
can be identified with RP2. Notice in this case that the four vertices do not all become identified.
Rather they are identified in pairs, and we are left with two vertices after making the quotient.
This example can be visualized by thinking of identifying the two halves of @D2 via a twist.

These 2-dimensional cell complexes are all examples of surfaces (2-dimensional manifolds).

30. Wed, Apr. 2

There is an important construction for surfaces called the connected sum.
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Definition 30.1. Suppose M and N are surfaces.
Pick subsets DM ✓ M and DN ✓ N that are homeo-
morphic to D2 and remove their interiors from M and
N . Write M 0 = M�Int(DM ) and N 0 = N�Int(DN ).
Then the connected sum of M and N is defined to be

M#N = M 0 [S1 N 0,

where the maps S1 �! M 0 and S1 �! N 0 are the
inclusions of the boundaries of the removed discs.

For two-dimensional cell-complexes, this can be visu-
alized as in the example to the right, which shows
that RP2#RP2 ⇠= K, the Klein bottle.

Example 30.2. If M is a surface, then the connect sum M#S2 is again homeomorphic to M .

Example 30.3. If M is a surface, then the connect sum M#T 2 can be viewed as M with a
“handle” glued on.

For example, consider M = T 2. Then T 2#T 2 looks liked a “two-holed torus”. This is called M2,
the (orientable) surface of genus two. From the cell structure resulting from the picture, we see a
wedge of four circles (let’s call the generators of the circles a1, b1, a2, b2) with a two-cell attached
along the element [a1, b1][a2, b2]. It follows that the fundamental group of M2 is

F (a1, b1, a2, b2)/[a1, b1][a2, b2].

We also find that �(M2) = 1� 4 + 1 = �2.

Example 30.4. (Surface of genus g) Similarly, if we take a connect sum of g tori, we get the
surface of genus g, Mg. It has fundamental group

F (a1, b1, . . . , ag, bg)/[a1, b1] . . . [ag, bg].

We now have �(Mg) = 1� 2g + 1 = 2� 2g.
We are headed towards a “classification theorem” for compact surfaces, so let us now show that

if g1 6= g2 then Mg1 is not homeomorphic to Mg2 . We show this by showing they have di↵erent
fundamental groups. As we have said already, understanding a group given by a list of generators
and relations is not always easy, so we make life easier by considering the abelianizations of the
fundamental groups.

We introduced this already last week, but let’s review. The abelianization Gab of G is the group
defined by

Gab = G/[G,G],

where [G,G] is the (normal) subgroup generated by commutators.

Lemma 30.5. The abelianization F (a1, . . . , an)ab is the free abelian group Zn.

Now the product of commutators [a1, b1] . . . [ag, bg] is of course in the commutator subgroup of
F (a1, b1, . . . , ag, bg), and it follows that ⇡1(Mg)ab ⇠= Zg.

Lemma 30.6. If H ⇠= G then Hab
⇠= Gab.

As a result, we see that if g1 6= g2 then ⇡1(Mg1) 6= ⇡1(Mg2) because their abelianizations are not
isomorphic.

Note that we have also distinguished all of these from S2 (which has trivial fundamental group)
and from RP2 (which has abelian fundamental group Z/2Z).
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31. Fri, Apr. 4

No class (NCUR).
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