
32. Mon, Apr. 7

Last time, we introduced the genus g surfaces Mg, defined as the g-fold connected sum of copies
of T 2. We found that

⇡1(Mg) ⇠= F (a1, b1, . . . , ag, bg)/[a1, b1] . . . [ag, bg].

Proposition 32.1. ⇡1(Mg)ab ⇠= Z2g.

Proof. Let F = F (a1, b1, . . . , an, bn), G = ⇡1(Mg), and let q : F �! G be the quotient. Then
[a1, b1] . . . [ag, bg] 2 [F, F ] and q([F, F ]) = [G,G], so the Third Isomorphism Theorem gives Gab

⇠=
Fab

⇠= Z2g. ⌅

Corollary 32.2. If g1 6= g2 them Mg1 6⇠= Mg2.

We have distinguished the fundamental groups ⇡1(Mg) from each other and also from ⇡1(RP2).
What about the Klein bottle K? We found last week that ⇡1(K) ⇠= F (a, b)/aba�1b. If we

abelianize this fundamental group, we get

Z[a]⇥ Z[b]/(a+ b� a+ b) = Z[a]⇥ Z[b]/2b ⇠= Z⇥ Z/2Z.

This group is di↵erent from all of the others, soK is not homeomorphic to any of the above surfaces.
The last main example is

Example 32.3. (RP2#RP2# . . .#RP2) Suppose we take a connect sum of g copies of RP2. We
will call this surface Ng. Following the examples from last week, we see that we get a fundamental
group of

⇡1(Ng) ⇠= F (a1, . . . , ag)/a
2
1a

2
2 . . . a

2
g

and �(Ng) = 1� g + 1 = 2� g. The abelianization is then

⇡1(Ng)ab ⇠= Zg/(2, 2, . . . , 2).

Define a homomorphism ' : Zg/(2, . . . , 2) �! Z/2Z⇥ Zg�1 by

'(n1, . . . , ng) = (n1, n2 � n1, n3 � n1, . . . , ng � n1).

Then it is easily verified that ' is an isomorphism. In other words,

⇡1(Ng)ab ⇠= Z/2⇥ Zg�1.

We also compute that

�(Ng) = 1� g + 1 = 2� g.

Ok, so we have argued that the compact surfaces S2, Mg (g � 1), and Ng (g � 1) all have
di↵erent fundamental groups and thus are not homeomorphic. The remarkable fact is that these
are all of the compact (connected) surfaces.

Theorem 32.4. Every compact, connected surface is homeomorphic to some Mg, g � 0 or to some
Ng, g � 1.

Corollary 32.5. If �(M) = n is odd, then M ⇠= N2�n

Lemma 32.6. T 2#RP2 ⇠= RP2#RP2#RP2.

The proof is in the picture:
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In particular, this implies that Mg#Nk
⇠= N2g+k.

33. Wed, Apr. 9

Proof of the theorem. Let M be a compact, connected surface. We assume without proof (see
Prop 6.14 from Lee) that

• M is a 2-cell complex with a single 2-cell.
• the attaching map ↵ : S1 �! M1 for the 2-cell has the following property: let U be the
interior of a 1-cell. Then the restriction ↵ : ↵�1(U) �! U is a double cover. In other words,
if we label @D2 according to the edge identifications as we have done in the examples, each
edge appears exactly twice. Note that this must happen since each interior point on the
edge needs to have a half-disk on two sides.

So we can visualize M as a quotient of a 2n-sided polygon.
As we said above, each edge appears exactly twice on the boundary of the two-cell. If the two

occurrences have opposite orientations (as in the sphere), we say the pair is an oriented pair. If
the two occurrences have the same orientation (as in RP2), we say this is a twisted pair. There
will be 4 reductions in the proof!!

(1) If M ⇠= S2, we are done, so suppose (for the rest of
the proof) this is not the case. Then we can reduce to
a cell structure with no adjacent oriented pairs. (Just
fold these together.)

(2) We can reduce to a cell structure where all twisted pairs are adjacent.
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If this creates any adjacent oriented pairs, fold them in.
(3) We can reduce to a cell structure with a single 0-cell. Suppose a is an edge from x to y and

that x 6= y. Let b be the other edge connecting to y. By (1), b can’t be a�1. If b = a then
x = y. Suppose b 6= a, and write z for the other vertex on b. Then the edge b must occur
somewhere else on the boundary. We use the moves in the pictures below, depending on
whether the pair b is oriented or twisted.

������������������

This converts a vertex y into a vertex x. Note that this procedure does not separate any
adjacent twisted pairs, since the adjacent twisted pair b gets replaced by d.

(4) Observe that any oriented pair a, a�1 is interlaced with another oriented pair b, b�1. If
not, we can write the boundary in the form aW1a

�1W2. Now, given our assumption and
previous steps, no edge in W1 gets identified with an edge in W2. It follows that if the
endpoints of a are x and y, then these two vertices never get identified with each other, as
the vertex x cannot appear in W1 and similarly y cannot appear in W2.

34. Fri, Apr. 11

(5) We can further arrange it so that there is no interference: the oriented pairs of edges occur
as aba�1b�1 with no other edges in between. The proof is in the picture below, taken from
p. 177 of Lee.

Now we are done by Lemma 32.6. M is homeomorphic either to a connect sum of projective planes
or to a connect sum of tori. ⌅
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We saw in Corollary 32.5 that if �(M) is odd, we can immediately identify the homeomorphism
type of M . If �(M) is even, this is not the case, as T 2 and K both have Euler characteristic equal
to 0. To handle the even case, we make a definition.

Say that a surface M is orientable if it has a cell structure as above with no twisted pairs of
edges.

Proposition 34.1. A surface is orientable if and only if it is homeomorphic to some Mg.

Proof. (() Our standard cell structures for these surfaces have no twisted pairs of edges. ())
Apply the algorithm described in the above proof, starting with only oriented pairs of edges. Step
1 does not introduce any new edges. Step 2 can be skipped. Steps 3 cuts-and-pastes along a pair
of oriented edges and so does not change the orientation of any edges. Step 4 does not change
the surface. Step 5 again only cuts-and-pastes along oriented edges. It follows that in reducing to
standard form, we do not introduce any twisted pairs of edges. ⌅

In fact, you should be able to convince yourself that a surface is orientable if and only if every
cell structure as above has not twisted pairs. The point is that if you start with a cell structure
involving some twisted pairs and you perform the reductions described in the proof, you will never
get rid of any twisted pairs of edges.

The fact that the Mg can be embedded in R3 whereas the Ng cannot is precisely related to
orientability. In general, you can embed a (smooth) n-dimensional manifold in R2n, but you can
improve this to R2n�1 if the manifold is orientable. The definition we have given here depends on
particular kinds of CW structures, but the usual definitions of orientability (in terms of homology)
apply more widely.

In addition to the Ng’s, the Möbius band is a 2-manifold that is famously non-orientable.

This completes the main portion of the course, in terms of what would be covered in the prelim
exam. Now we can get to the fun stu↵!

? ? ? ? ? ? ??
                 

? ? ? ? ? ? ??

We have just been studying surfaces and have determined (well, at least given presentations for)
their fundamental groups. We have also seen (on exam 2) that there are higher homotopy groups
⇡n(X), so we might ask about the groups ⇡n(Mg) and ⇡n(Nk).

Recall, again from the exam, that any covering E �! B induces an isomorphism on all higher
homotopy groups. So it su�ces to understand the universal covers of these surfaces.

The first example would be M0 = S2, which is simply-connected. Note that this space is also the
universal cover of N1 = RP2, so these will have the same higher homotopy groups. We will come
back to these on Monday.

Another example is the componentwise-exponential covering q⇥q : R2 �! T 2, which shows that
T 2 has no higher homotopy groups. Note that also could have deduced this using that

⇡n(X ⇥ Y ) ⇠= ⇡n(X)⇥ ⇡n(Y )

and that S1 has no higher homotopy groups (also from Exam 2).

What about the Klein bottle K? Well, consider the relation on T 2 given by (x, y) ⇠ (x+ 1
2 , 1�y).

The quotient T 2/ ⇠ is K, and the quotient map T 2 �! K is a double cover. It follows that the
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universal cover of T 2, which is R2, is also the universal cover of K. So K also has no higher
homotopy groups!

It turns out the same is true for M�1 (has universal cover R2) and N�2.

Proposition 34.2. If g � 1, then there is a double cover of Ng by Mg�1. So the universal cover
of Ng is S2 when g = 1 and R2 when g > 1.

44


