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Example 38.1. Take X = T2. The standard cell structure we have used has a single 0, two 1-cells
a and b, and a single 2-cell e attached via aba~'b~!. Since there is a single 0-cell, this means that
automatically d; = 0. To calculate daz(e), we wish to calculate the coefficient in front of a and b.
For a, we must compose the attaching map aba~'b~! with the projection onto the circle a. This
means all of the b’s are sent to 0, so in the end we have aa~! = 0. The same goes for b, so dy = 0.
The chain complex C,(T?) is

7% 72%7

Before we consider other examples, like the Klein bottle or RP?, let’s discuss what these chain
complexes are for.

Definition 38.2. Given a chain complex C,, define a subgroup Z, C C), to be the kernel of d,.
Elements of Z,, are referred to as n-cycles. We also define B, C C), to be the image of d,,;1. Note
that since d, o dy+1 = 0, we have B, C Z,. Define the n-th homology group of the chain
complex C, to be

H,(C.) = Z,/Bp.
In the case of the complex C,(X) of cellular chains on a cell complex, we write H,(X) or H,(X;Z)
for H,(Cy(X)).

Let’s compute the homology groups of the above spaces.

Example 38.3. (S?, first approach) In the first CW structure on S2, it is clear that we get
HO:HQ:Zandle().

Example 38.4. (S?, second approach) In the second CW structure on S2?, we again see that
Hy =2 Z since di = 0, so that By = 0 and Hy = Zy = Z. Next, the statement d; = 0 also means
that Z1 = C7 = Z, and we see that ds is surjective, so that By = Z7 = (. It follows that H; = Z.
Finally, the kernel of ds is the cyclic subgroup of Z? generated by (1, —1), so Hy = Zo = 7.

Example 38.5. (52, third approach) In the third CW structure, the differential d; has image the
subgroup generated by (—1,1), so Hy = Z2/(—1,1) = Z. The kernel of d; is the subgroup generated
by (1, —1), which is the image of d2, so H; = 0. The kernel of dy is again the subgroup generated
by (—1,1), so that Hy = Z.

Example 38.6. (torus, first approach) Since all differentials were zero in C,(T?) given above, it
is immediate that

Ho(T*) =7,  H\(T?)=7?  Hy(T?) =L

Example 38.7. (torus, second approach) Consider the CW b
structure on 72 as given in the picture to the right. The
resulting chain complex is

72 ( ! _;)% 73 0 7 a a
—1 1
We read off right away that Ho(7T?) = Z. Then b
H(T?) = Z3/im(dy) = Z3/7Z(1,1, —1) = Z°.

The last isomorphism is induced by the map <1 0 1) : 73 — 72. Finally,
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Hy(T?) = ker(do) = Z(1,1) = Z.
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We continue with more homology calculation examples.

Example 39.1. (Klein bottle, first version) Recall that we have a CW structure on K having a
single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation aba=!'b. It
follows that C,(K) is the chain complex

Z 7(3)» )

We read off immediately that Hy(K) = Z and that Ha(K) = 0 since ds is injective. The remaining
calculation is

H(K)=7%]7(0,2) 2 7. & 7./2.

Example 39.2. (Klein bottle, second version) Recall that we discussed a second CW structure on
K having a single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation
c2d?. Tt follows that C,(K) is the chain complex

Z 7(3)» 722 .7

We read off immediately that Hy(K) = Z and that Ho(K) = 0 since ds is injective. The remaining
calculation is
H|(K)=7%]7(2,2) 2 7.® 7./2Z.

Here the isomorphism Z2/7(2,2) = 7Z @ 7/27 is induced by the map

7’ » Lo L/2Z

(n,k) — (n—k, k).

Example 39.3. (RP?) We have a CW structure with a single cell in dimensions 0, 1, and 2. The
attaching map for the 2-cell is 7o : S* — S. Tt follows that the chain complex C,(RP?) is

72727
Thus Ho(RP?) 2 Z, Hy(RP?) = Z,/27, and Hy(RP?) = 0.

Comparing what we have found in the examples so far suggest what would happen with a general
surface.

Example 39.4. (Orientable surfaces) We have a CW structure on M, with a single 0-cell and 2-cell
and 2g 1-cells. The attaching map for the 2-cell is the product of commutators [a1,b1]. .. [ag, by].
It follows that C,(M,) is the chain complex

z%722%7
So Ho(My) = Z, Hy(M,) = 7?9, and Ho(M,) = Z.

Example 39.5. (Nonorientable surfaces) We have a CW structure on N, with a single 0-cell and
2-cell and g 1-cells. The attaching map for the 2-cell is the product a?. .. ag. It follows that C (V)

is the chain complex
2
7 - () L7999 o
2

So Ho(N,) & Z, H(Ny) = 7Z9)7(2,...,2) 2 Z9~' @ Z/2Z, and Hy(N,) = 0. Again, the isomor-
phism Z9/7(2,...,2) = 2971 @ Z/2Z is induced by

79 - 79 o 7/27
(n1,...,ng) = (N1 —Ng, N2 — Ng, ..., Ng—1 — Ng, Ng).
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Remark 39.6. According to the previous examples and our Proposition 34.1, a compact, connected
surface M satisfies Ho(M) = Z if M is orientable and satisfies Ho(M) = 0 if M is not orientable.

So Hs tells us about orientability. What about Hy?

12

Proposition 39.7. A CW complex is path-connected (and nonempty) if and only if Ho(X) = Z.
In general, we have

Ho(X) = Zmo(X)].

Proof. Suppose that X is nonempty and path-connected. Define a homomorphism € : Cy(X) — Z,
which is equal to 1 on every 0-cell. This is clearly surjective (this uses that X is nonempty and
thus has at least one O-cell). We claim that ker(e) = im(d;). The First Isomorphism Theorem will
then imply that Hy(X) = Z.

The subgroup im(d;) of Cy(X) is generated by the elements dj(e) = e(1) — e(0). Since each of
these lies in ker(e), it follows that the entire image is in ker(e). For the other containment, suppose
that 2 =), n;x; € ker(e). We then have

0=€<;ni$i> :;m

The argument is by induction on N = ). |n;|. There is nothing to prove if N = 0. Note that the
1-skeleton X' must be path-connected since X is path-connected. Suppose that some coefficient
n; > 0. Then there must be another coefficient n; < 0. By assumption, there is a path in X 1 from
x; to z;. By the topology axioms on a CW complex, this path meets finitely many 1-cells. In other
words, we can connect z; to x; via a finite sequence of edges. If the edges are eq,..., ey, then by
construction we have
d1(€1+"‘+€k) =T, — Zj.
We have thus reduced to the N — 2 case.
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Now suppose that Hy(X) = Z. It follows that Cy(X) # 0, so that X is nonempty. The argument
from above shows that € : Cy(X) — Z is surjective and vanishes on im(d;), so that we get an
induced surjection Hyp(X) — Z. Since we have assumed that Ho(X) = Z, it follows that € is an

isomorphism.
We can run the above argument backwards to deduce that the 1-skeleton must be path-connected.
That is, suppose = and y are O-cells. Then [z] = [y], so there must be a 1-chain w such that

d(w) = x —y. Suppose w = Y _mn;e;. Then one edge e; must end at z. Let a = €1(0). Then, if
a # y, there must be another edge ending at a to cancel it out. Repeat this until we get an edge
starting at either x or y. If it is x, then we may remove all the previously considered 1-cells, and
the rest still give a 1-cycle. Repeat the argument. If we get y, we are done.

This argument shows that X! is path-connected. Attaching higher cells does not break the
connectivity, so that X is path-connected.

For the general statement, the point is that since X is CW, we can write it as the disjoint union

of its path-components. The result follows from the next proposition.
|

Proposition 40.1. Let X =[], X;. Then

H,(X) = @HH(XZ-)

for all n.
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Proof. The point is that there is already a direct sum decomposition
Cn(X) = @Cn(Xi)
i
since a cell of X must lie in a single component. Moreover, the differentials d,, are compatible

with this direct sum decomposition, in the sense that the restriction of d, to C,(X;) lands in
Cn-1(X;). [ |
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