
38. Mon, Apr. 21

Example 38.1. Take X = T 2. The standard cell structure we have used has a single 0, two 1-cells
a and b, and a single 2-cell e attached via aba�1b�1. Since there is a single 0-cell, this means that
automatically d1 = 0. To calculate d2(e), we wish to calculate the coe�cient in front of a and b.
For a, we must compose the attaching map aba�1b�1 with the projection onto the circle a. This
means all of the b’s are sent to 0, so in the end we have aa�1 = 0. The same goes for b, so d2 = 0.
The chain complex C⇤(T 2) is

Z 0�! Z2 0�! Z.

Before we consider other examples, like the Klein bottle or RP2, let’s discuss what these chain
complexes are for.

Definition 38.2. Given a chain complex C⇤, define a subgroup Zn ✓ Cn to be the kernel of dn.
Elements of Zn are referred to as n-cycles. We also define Bn ✓ Cn to be the image of dn+1. Note
that since dn � dn+1 = 0, we have Bn ✓ Zn. Define the n-th homology group of the chain
complex C⇤ to be

Hn(C⇤) = Zn/Bn.

In the case of the complex C⇤(X) of cellular chains on a cell complex, we write Hn(X) or Hn(X;Z)
for Hn(C⇤(X)).

Let’s compute the homology groups of the above spaces.

Example 38.3. (S2, first approach) In the first CW structure on S2, it is clear that we get
H0 = H2 = Z and H1 = 0.

Example 38.4. (S2, second approach) In the second CW structure on S2, we again see that
H0

⇠= Z since d1 = 0, so that B0 = 0 and H0 = Z0 = Z. Next, the statement d1 = 0 also means
that Z1 = C1 = Z, and we see that d2 is surjective, so that B1 = Z1 = C1. It follows that H1

⇠= Z.
Finally, the kernel of d2 is the cyclic subgroup of Z2 generated by (1,�1), so H2 = Z2

⇠= Z.

Example 38.5. (S2, third approach) In the third CW structure, the di↵erential d1 has image the
subgroup generated by (�1, 1), so H0

⇠= Z2/(�1, 1) ⇠= Z. The kernel of d1 is the subgroup generated
by (1,�1), which is the image of d2, so H1 = 0. The kernel of d2 is again the subgroup generated
by (�1, 1), so that H2

⇠= Z.

Example 38.6. (torus, first approach) Since all di↵erentials were zero in C⇤(T 2) given above, it
is immediate that

H0(T
2) ⇠= Z, H1(T

2) ⇠= Z2, H2(T
2) ⇠= Z.

Example 38.7. (torus, second approach) Consider the CW
structure on T 2 as given in the picture to the right. The
resulting chain complex is

Z2

✓
1 �1
1 �1
�1 1

◆
// Z3 0 // Z

We read o↵ right away that H0(T 2) ⇠= Z. Then
H1(T

2) = Z3/ im(d2) = Z3/Z(1, 1,�1) ⇠= Z2.

a a

b

b

c

f

e

The last isomorphism is induced by the map

✓
1 0 1
0 1 1

◆
: Z3 �! Z2. Finally,

H2(T
2) = ker(d2) = Z(1, 1) ⇠= Z.
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39. Wed, Apr. 23

We continue with more homology calculation examples.

Example 39.1. (Klein bottle, first version) Recall that we have a CW structure on K having a
single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation aba�1b. It
follows that C⇤(K) is the chain complex

Z
⇣
0
2

⌘
// Z2 0 // Z

We read o↵ immediately that H0(K) ⇠= Z and that H2(K) = 0 since d2 is injective. The remaining
calculation is

H1(K) = Z2/Z(0, 2) ⇠= Z� Z/2Z.
Example 39.2. (Klein bottle, second version) Recall that we discussed a second CW structure on
K having a single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation
c2d2. It follows that C⇤(K) is the chain complex

Z
⇣
2
2

⌘
// Z2 0 // Z

We read o↵ immediately that H0(K) ⇠= Z and that H2(K) = 0 since d2 is injective. The remaining
calculation is

H1(K) = Z2/Z(2, 2) ⇠= Z� Z/2Z.
Here the isomorphism Z2/Z(2, 2) ⇠= Z� Z/2Z is induced by the map

Z2 ⇣ Z� Z/2Z
(n, k) 7! (n� k, k).

Example 39.3. (RP2) We have a CW structure with a single cell in dimensions 0, 1, and 2. The
attaching map for the 2-cell is �2 : S1 �! S1. It follows that the chain complex C⇤(RP2) is

Z 2�! Z 0�! Z.
Thus H0(RP2) ⇠= Z, H1(RP2) = Z/2Z, and H2(RP2) = 0.

Comparing what we have found in the examples so far suggest what would happen with a general
surface.

Example 39.4. (Orientable surfaces) We have a CW structure on Mg with a single 0-cell and 2-cell
and 2g 1-cells. The attaching map for the 2-cell is the product of commutators [a1, b1] . . . [ag, bg].
It follows that C⇤(Mg) is the chain complex

Z 0�! Z2g 0�! Z.
So H0(Mg) ⇠= Z, H1(Mg) ⇠= Z2g, and H2(Mg) ⇠= Z.
Example 39.5. (Nonorientable surfaces) We have a CW structure on Ng with a single 0-cell and
2-cell and g 1-cells. The attaching map for the 2-cell is the product a21 . . . a

2
g. It follows that C⇤(Ng)

is the chain complex

Z
 

2
.
.
.
2

!
// Zg 0 // Z

So H0(Ng) ⇠= Z, H1(Ng) ⇠= Zg/Z(2, . . . , 2) ⇠= Zg�1 � Z/2Z, and H2(Ng) = 0. Again, the isomor-
phism Zg/Z(2, . . . , 2) ⇠= Zg�1 � Z/2Z is induced by

Zg ⇣ Zg�1 � Z/2Z
(n1, . . . , ng) 7! (n1 � ng, n2 � ng, . . . , ng�1 � ng, ng).
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Remark 39.6. According to the previous examples and our Proposition 34.1, a compact, connected
surface M satisfies H2(M) ⇠= Z if M is orientable and satisfies H2(M) = 0 if M is not orientable.

So H2 tells us about orientability. What about H0?

Proposition 39.7. A CW complex is path-connected (and nonempty) if and only if H0(X) ⇠= Z.
In general, we have

H0(X) ⇠= Z[⇡0(X)].

Proof. Suppose that X is nonempty and path-connected. Define a homomorphism ✏ : C0(X) �! Z,
which is equal to 1 on every 0-cell. This is clearly surjective (this uses that X is nonempty and
thus has at least one 0-cell). We claim that ker(✏) = im(d1). The First Isomorphism Theorem will
then imply that H0(X) ⇠= Z.

The subgroup im(d1) of C0(X) is generated by the elements d1(e) = e(1) � e(0). Since each of
these lies in ker(✏), it follows that the entire image is in ker(✏). For the other containment, suppose
that z =

P
i nixi 2 ker(✏). We then have

0 = ✏
⇣X

i

nixi

⌘
=
X

i

ni.

The argument is by induction on N =
P

i |ni|. There is nothing to prove if N = 0. Note that the
1-skeleton X1 must be path-connected since X is path-connected. Suppose that some coe�cient
ni > 0. Then there must be another coe�cient nj < 0. By assumption, there is a path in X1 from
xj to xi. By the topology axioms on a CW complex, this path meets finitely many 1-cells. In other
words, we can connect xj to xi via a finite sequence of edges. If the edges are e1, . . . , ek, then by
construction we have

d1(e1 + · · ·+ ek) = xi � xj .

We have thus reduced to the N � 2 case.

40. Fri, Apr. 25

Now suppose that H0(X) ⇠= Z. It follows that C0(X) 6= 0, so that X is nonempty. The argument
from above shows that ✏ : C0(X) �! Z is surjective and vanishes on im(d1), so that we get an
induced surjection H0(X) �! Z. Since we have assumed that H0(X) ⇠= Z, it follows that ✏ is an
isomorphism.

We can run the above argument backwards to deduce that the 1-skeleton must be path-connected.
That is, suppose x and y are 0-cells. Then [x] = [y], so there must be a 1-chain w such that
d(w) = x � y. Suppose w =

P
niei. Then one edge e1 must end at x. Let a = e1(0). Then, if

a 6= y, there must be another edge ending at a to cancel it out. Repeat this until we get an edge
starting at either x or y. If it is x, then we may remove all the previously considered 1-cells, and
the rest still give a 1-cycle. Repeat the argument. If we get y, we are done.

This argument shows that X1 is path-connected. Attaching higher cells does not break the
connectivity, so that X is path-connected.

For the general statement, the point is that since X is CW, we can write it as the disjoint union
of its path-components. The result follows from the next proposition.

⌅
Proposition 40.1. Let X ⇠=

`
iXi. Then

Hn(X) ⇠=
M

i

Hn(Xi)

for all n.
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Proof. The point is that there is already a direct sum decomposition

Cn(X) ⇠=
M

i

Cn(Xi)

since a cell of X must lie in a single component. Moreover, the di↵erentials dn are compatible
with this direct sum decomposition, in the sense that the restriction of dn to Cn(Xi) lands in
Cn�1(Xi). ⌅
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