
41. Mon, Apr. 28

We saw last time that homology interacts nicely with disjoint unions. We list here a few more
nice properties of homology, without proof.

Proposition 41.1.

(1) If X is a k-dimensional CW complex, then Hn(X) = 0 for all n > k.
(2) Let f : X �! Y be a cellular map, meaning that f(Xk) ✓ Y k for all k. Then f induces

homomorphisms f⇤ : Hn(X) �! Hn(Y ) for all n.
(3) Let ◆ : Xk ,! X be the inclusion of the k-skeleton. Then the induced map

◆⇤ : Hn(X
k) �! Hn(X)

is an isomorphism for n < k and a surjection for n = k.
(4) Suppose that f ' g : X �! Y are both cellular maps. Then f⇤ = g⇤.

Note that (4) implies that homotopy equivalent spaces have isomorphic homology.
On the other hand, this version of homology also has its drawbacks.

• This requires a cell structure on a space, and these are not always easy to come by.
• We only get induced maps on homology coming from cellular maps of spaces. But most maps
are not cellular! A famous example of a noncellular map is the diagonal map X �! X ⇥X
for any space X (think of the case X = I).

I encourage you to read the first five pages of Chapter 2 of Hatcher. He has a nice discussion of
how you might be lead to (cellular) homology and why you might turn to other forms (simplicial
and singular).

Ok, last week we discussed H0(X). What about H1(X)? In the examples we’ve seen, it looks
like H1(X) is close to ⇡1(X).

Theorem 41.2 (Hurewicz). Assume that X is a connected CW complex. Then

H1(X) ⇠= ⇡1(X)ab.

Proof. First, note that cells in dimensions 3 or higher a↵ect neither ⇡1 nor H1. In other words, if
X2 is the 2-skeleton, then ⇡1(X2) ⇠= ⇡1(X) and H1(X2) ⇠= H1(X).

42. Wed, Apr. 30

By the van Kampen theorem, we know that ⇡1(X1) ⇣ ⇡1(X2) is surjective. Moreover, if we
denote by �1, . . . ,�k the 2-cells of X (or really, their attaching maps, thought of as elements of
⇡1(X1)), then the van Kampen theorem tells us that

⇡1(X
2) ⇠= ⇡1(X

1)/h�1, . . . ,�ki.

Denote by X̃1 the result of collapsing out a maximal tree in the graph X1, and recall that the
natural map X1 �! X̃1 is a homotopy equivalence. The space X̃1 is a wedge of circles X̃1 ⇠=

W
S1,

each circle corresponding to a generator of ⇡1(X1). We now have

⇡1(X
2) ⇠= ⇡1(X̃

1)/h�1, . . . ,�ki ⇠= F (↵1, . . . ,↵n)/h�1, . . . ,�ki.

Let’s now turn to homology. We know that H1(X) is computed as a quotient

C2(X) �! Z1(X).

Lemma 42.1. We have Z1(X) = Z1(X1) = H1(X1) ⇠= H1(X̃1) = Z1(X̃1) = C1(X̃1).
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The homology isomorphism follows from the fact that X �! X̃1 is a homotopy equivalence.
The lemma implies that H1(X) is the quotient

H1(X) ⇠= Z(↵1, . . . ,↵n)/h�1, . . . ,�ki.
There is now an obvious surjection

⇡1(X) �! H1(X)

induced by the abelianization map F (↵1, . . . ,↵n) ⇣ Z[↵1, . . . ,↵n]. It follows that the induced map
is also abelianization, as we saw on April 7. ⌅

There is also a statement in higher dimensions, assuming that all lower homotopy groups vanish.
We state it without proof.

Theorem 42.2 (Hurewicz). Assume that X is a CW complex satisfying ⇡k(X) = 0 for k < n (we
say that X is (n� 1)-connected), where n � 2. Define

hn : ⇡n(X) �! Hn(X)

by
hn(↵) = ↵⇤(xn),

where xn 2 Hn(Sn) is the class of the unique n-cell (in the minimal CW structure on Sn). Then
hn is an isomorphism of groups, known as the Hurewicz map.

Using induction and the fundamental group Hurewicz theorem, this implies the following result.

Corollary 42.3. Suppose that X is a CW complex that is (n� 1)-connected. Then Hk(X) = 0 for
0 < k < n as well.

Note that the torus T 2 shows that Theorem 42.2 fails if we drop the connectivity hypothesis.

Remark 42.4. The Hurewicz theorem is often mentioned as the simplest way to establish the
isomorphism ⇡n(Sn) ⇠= Z for n � 2. But for us this would be circular, since we needed to know this
isomorphism in order to define the cellular di↵erentials. The point is that the Hurewicz theorem
also holds in simplicial or singular homology, neither of which relies on the calculation ⇡n(Sn) ⇠= Z
in the definition.

Recall that we talked about the Euler characteristic for surfaces. For any chain complex C⇤, we
define the Euler characteristic of C⇤ by �(C⇤) =

P
(�1)i rank(Ci). Recall that the rank of a free

abelian group is the maximal number of linearly independent elements. For example, if C ⇠= Zr�A,
where A is finite, then rankC = r.

43. Fri, May 2

Proposition 43.1. For any chain complex, we have �(C⇤) = �(H⇤(C⇤)).

Proof. The key is to note that we have short exact sequences

0 �! Zi �! Ci �! Bi�1 �! 0.

and
0 �! Bi �! Zi �! Hi �! 0.

By a homework problem, these tell us that

rank(Ci) = rank(Zi) + rank(Bi�1)

and
rank(Zi) = rank(Bi) + rank(Hi).
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So X

i

(�1)i rank(Ci) =
X

i

(�1)i(rank(Bi) + rank(Hi) + rank(Bi�1)).

This is a telescoping sum, and we end up with �(H⇤). ⌅
So this tells us that the Euler characteristic only depends on the homology of the space, not on

the particular cellular model.

Example 43.2. We talked about the homology of RP2 earlier. We saw this was

H0(RP2) ⇠= Z, H1(RP2) = Z/2, H2(RP2) = 0.

Since the standard model for RP2 has no cells above dimension 2, there is of course no homology
in higher dimensions. The Euler characteristic computation according to homology is

�(RP2) = rank(Z)� rank(Z/2) = 1.

Now let’s consider RPn for n > 2. The cellular chain complex is

Cn
1+(�1)n// Cn�1

// . . .
2 // C1

0 // C0

Z Z Z Z
To understand the di↵erential dk, it su�ces to understand what it does to the k-cell ek. The
attaching map for this k-cell is the double cover Sk�1 �! RPk�1. Then dk(ek) = nkek�1, where
nk is the degree of the map

Sk�1 �! RPk�1 �! RPk�1/RPk�2 ⇠= Sk�1.

To visualize this, think of RPk�1 as the quotient of the northern hemisphere of Sk�1 by a relation
on the boundary. Then RPk�2 is the quotient of the boundary, so the quotient RPk�1/RPk�2 is the
northern hemisphere with the equator collapsed. The map Sk�1 �! RPk�1/RPk�2 factors through
Sk�1/Sk�2 ⇠= Sk�1 _ Sk�1. The map on the nothern hemisphere Sk�1 �! RPk�1/RPk�2 ⇠= Sk�1

is the identity. On the other hand, the map on the southern hemisphere can be identified with
the map (x1, . . . , xk) 7! (�x1, . . . ,�xk). This is a homeomorphism, so the question is whether it
is homotopic to the identity, in which case the map on this hemisphere corresponds to 1, or it is
not, in which case the maps corresponds to �1. But this map is a sequence of k reflections, each
of which has determinant �1. So the map has determinant (�1)k. This number then agrees with
the degree of the map, and we find that nk = 1 + (�1)k.

It follows that in degrees less than n we have

H2i(RPn) = 0, i > 0, H0(RPn) = Z, H2i+1(RPn) = Z/2.
To determine Hn(RPn), we consider dn : Cn �! Cn�1. If n is even, then dn is injective, so
Hn(RPn) = 0. On the other hand, if n is odd, then dn = 0, so that Hn(RPn) ⇠= Z.

The Euler characteristic computation according to homology is now

�(RP2k) = 0 + 0 + · · ·+ 0 + 1 = 1, �(RP2k+1) = 1 + 0 + 0 + · · ·+ 0 + 1 = 2.

Recall that we mentioned that for an n-manifold, the top homology group Hn(M) is either Z or
0, depending on whether the manifold is orientable or not. The above shows that RPn is orientable
if and only if n is odd (n � 1).

Recall that one of the themes of this course was to reduce a problem in topology to one in
algebra. For instance, we try to understand whether spaces are homotopy equivalent by comparing
their homotopy groups.
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Definition 43.3. A map f : X �! Y is a weak homotopy equivalence if it induces a bi-
jection ⇡0(X) ⇠= ⇡0(Y ) and if, for every choice of basepoint x 2 X, it induces an isomorphism
⇡n(X,x) ⇠= ⇡n(Y, f(x)).

Example 43.4. Consider the set X = {L,R,N, S}, topologized as follows: the singletons L and
R are open, as are the complements of the singletons N and S. Of course this forces {L,R} to be
open. Then define f : S1 �! X by

f((x, y)) =

8
>><

>>:

L x < 0
R x > 0
N (x, y) = (0, 1)
S (x, y) = (0,�1)

Then it is quickly verified that this is continuous.
In fact, it is also a weak homotopy equivalence. Again, it is quickly checked that X is path-

connected. For a larger theory of which this is merely one example, see Springer Lecture Notes
2032, Algebraic Topology of Finite Topological Spaces and Applications.
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