
8. Mon, Feb. 3

Snow Day!!

9. Wed, Feb. 5

Today, we’re going to calculate ⇡1(RP2), but first I want to discuss a result about contractibility
of paths.

Proposition 9.1. (1) Let ↵ 2 ⇡1(X,x0). Then ↵ 'p cx0 if and only if ↵ : S1 �! X extends
to a map D2 �! X.

(2) Let ↵ and � be paths in X from x to y. Then ↵ 'p � if and only if the loop ↵ ⇤ � is null.

Proof.

(1) ()) This follows from Homework II.4.
(() Again using Homework II.4, we may assume given a homotopy h : ↵ ' cx. Since h is
not assumed to be a path-homotopy, the formula �(s) = h(0, s) defines a possible nontrivai
path. The picture

where h1(s, t) = �(st) and h3(s, t) = �(st), defines a path-homotopy H : ↵ 'p � · cx · �.
(2) The point is that

↵ 'q � ) ↵� 'p �� 'p cx

and similarly
↵� 'q cx ) ↵ 'q ↵�� 'p cx� 'p �

⌅

Recall that for S1, the exponential map p : R �! S1 was key. The analogue of that map for
RP2 will be the quotient map

q : S2 �! RP2.

Note that in this case, the “fiber” (the preimage of the basepoint) consists of two points. Another
ingredient that was used for S1 was that it has a nice cover. The same is true for RP2: there is a
cover of RP2 by open sets U1, U2, U3 such that each preimage q�1(Ui) is a disjoint union Vi,1 qVi,2

such that on each component Vi,j , the map q gives a homeomorphism q : Vi,j
⇠= Ui.

For any point x 2 q�1(1) = {�1, 1}, we define a loop �(x) at 1 in RP2 as follows: take any path
↵ in S2 from 1 to x. Then �(x) = q↵ is a loop in RP2. Note that this is well-defined because S2

is simply-connected, so that any two paths between 1 and x are homotopic. When x = 1, this
of course gives the class of the constant loop, but when x = �1, this gives a nontrivial loop in RP2.
We claim that this is a bijection. So there is only one nontrivial loop!

To see this, we construct an inverse w : ⇡1(RP2) �! {�1, 1}. We need some lemmas:

Lemma 9.2. Given any loop in RP2, there is a unique lift to a path in S2 starting at 1.

The proof of this lemma is exactly the same as that of the first lemma in the proof for the
circle.

Lemma 9.3. Let h : � 'p � be a path-homotopy between loops at 1 in RP2. Then there is a unique
lift h̃ : I ⇥ I �! S2 such that h̃(0, 0) = 1.
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Again, the proof here is identical to that for the sphere. Let’s see how we can use the lemmas to
define w. Given any loop � in RP2, there is a unique lift �̃ in S2 starting at 1. Since it is a lift of
a loop, we must have �̃(1) 2 {�1, 1}. So we define w(�) = �̃(1). That this is well-defined follows
from the second lemma.

It remains to show that w really is the inverse. Let x 2 {�1, 1}. Then �(x) = q � ↵ for some
path ↵ in S2 from 1 to x. To compute w(�(x)), we must find a lift of �(x), but we already know
that ↵ is the lift. Thus w(�(x)) = ↵(1) = x.

Similarly, suppose � is any loop in RP2. Let �̃ be a lift. Then �(w(�)) = �(�̃(1)) = q↵, where ↵
is any path from 1 to �̃(1). But of course �̃ is such a path and � = q�̃.

Note that we have given a bijection between ⇡1(RP2) and {�1, 1}, but we have not talked about
a group structure. That’s because we don’t need to: there is only one group of order two! We have
shown that

⇡1(RP2) ⇠= C2.

10. Fri, Feb. 7

Last time, we showed that ⇡1(RP2) ⇠= C2, the cyclic group of order two. In fact, the same proof
(replacing S2 by Sn) shows that, for n � 2, we have ⇡1(RPn) ⇠= C2.

We will do one more example before describing the repeated phenomena we have seen in these
examples. First, recall from last semester that given based spaces (X,x0) and (Y, y0), their wedge
sum, or one-point union, is X _ Y = X q Y/⇠, where x0 ⇠ y0. Today, we want to study the
fundamental group of S1 _ S1 following the same approach as in the previous examples. We want
to once again find a nice map p : X �! S1 _ S1 for some X. What we really want is an example
of the following:

Definition 10.1. A surjective map p : E �! B is called a covering map if every b 2 B has a
neighborhood U such that p�1(U) is a disjoint union p�1(U) = qiVi and such that p restricts to a

homeomorphism p : Vi
⇠=�! U . We say that the neighborhood U is evenly covered by p.

Remark 10.2. It is common to assume that E is connected and locally path-connected. We will
assume this from now on, as it simplifies the theory. So as to avoid repeatedly saying (or writing)
“connected and locally path-connected”, I will simply call these spaces very connected.

It is important to note that the neighborhood condition is local in B, not E. This contrasts with
the following definition.

Definition 10.3. A map f : X �! Y is said to be a local homeomorphism if every x 2 X has

a neighborhood U such that f|U : U
⇠=�! f(U) is a homeomorphism.

Every covering map is a local homeomorphism: given e 2 E, take an evenly covered neighborhood
U of p(e). Then e is contained in one of the Vj ’s, which is the desired neighborhood . The converse
is not true, as the next example shows.

Example 10.4. Consider the usual exponential map p : R �! S1, but now restrict it to
(0, 8.123876). This is a local homeomorphism but not a covering map. For instance, the stan-
dard basepoint of S1 has no evenly covered neighborhood under this map.
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Ok, now back to S1 _ S1. It is tempting to take X = R since S1 _ S1

looks locally like a line, but there is a problem spot at the crossing of the
figure eight. To fix this, we might try to take X to be the union of the
coordinate axes inside of R2. This space is really just R_R, and so we have
the map p _ p : R _ R �! S1 _ S1. We want a cover of S1 _ S1 which is
nicely compatible with our map from X. Suppose we consider the cover U1,
U2, and U3, where U1 is the complement of the basepoint in one circle, U2 is
the complement of the basepoint in the other, and finally U3 is some small
neighborhood of the basepoint. Well, U1 and U2 are good neighborhoods for
p _ p, but U3 is not. The map p _ p does not give a homeomorphism from
each component of the preimage of U3 to U3. To fix this, we would want to
add infinitely many cross-sections to each of the axes.

Instead, we takeX to be the fractal space given in the picture. We define
p : X �! S1 _ S1 as follows. On horizontal segments, use the exponential
map to the right branch of S1_S1. On vertical segments, use the left branch.
Then the cover U1, U2, and U3 from above is compatible with this new map
p, and we see that p is a covering map.

Lemma 10.5. The space X is simply-connected.

Proof. The main point is that any loop in X is compact and therefore contained in a finite union
of edges. Consider the edge furthest from the basepoint that contains part of the loop. The loop is
homotopic to one constant on this furthest edge. This furthest edge is now no longer needed, and
we have a new furthest edge. We can repeat until the loop is completely contracted. ⌅
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