
11. Mon, Feb. 10

Last time, we were working on computing ⇡1(S1 _ S1). We found a simply connected covering
p : X �! S1 _ S1, where X was a fractal picture that locally looks like the coordinate axes in R2.
Let F = p�1(⇤) be the fiber. Any point in this fiber may be uniquely described as a “word” in the
letters u, r, d, and l.

Define
� : F �! ⇡1(S

1 _ S1)

as follows: given y 2 F , let ↵y be any path in X from the basepoint to y. Then �(y) = p � ↵. It
does not matter which ↵y we choose since X is simply-connected. We will define an inverse to �,
but we now state the needed lemmas in the generality of coverings.

Lemma 11.1. Let p : E �! B be a covering and suppose p(e) = b. Given any path starting at b
in B, there is a unique lift to a path in E starting at e.

The proof of this lemma is exactly the same as that of the first lemma in the proof for the
circle.

Lemma 11.2. Let p : E �! B be a covering and suppose p(e) = b. Let h : � 'p � be a path-
homotopy between paths starting at b in B. Then there is a unique lift h̃ : I ⇥ I �! E such that
h̃(0, 0) = e.

Just as in the previous examples, the above lemmas allow us to define w : ⇡1(S1 _ S1) �! F
by the formula w(�) = �̃(1). We will skip the verification that � and w are inverse, as this really
follows the same script.

We have established a bijection between ⇡1(S1 _ S1) and the set of “words” in the letters u, r,
d, and l. It remains to describe the group structure. For this, we will back up a little.

Definition 11.3. Let p : E �! B and q : E0 �! B be covers of a space B. A map of covers
from E to E0 is simply a map of spaces ' : E �! E0 such that q � f = p. These are also sometimes
called covering homomorphisms.

The special case in which the two covers are the same cover and f is a homeomorphism is referred
to as a deck transformation. We write Aut(E) for the set of all deck transformations of E. This
is a group under composition.

Keeping our notation from earlier, let b 2 B be a basepoint and write F = p�1(b) for the fiber.
Note that any deck transformation ' : E �! E must take F to F . Let us pick a basepoint e for
E. Since we want the covering map q to be based, this means that e lies in the fiber F . We may
now define a map A : Aut(E) �! F by A(') = '(e).

Theorem 11.4. Let p : X �! B be a covering such that X is simply connected. Then the
map A : Aut(X) �! F is a bijection and the composition � � A is an isomorphism of groups
Aut(X) ⇠= ⇡1(B).

Proof. Let us first show that A is injective. Thus let '1 and '2 be deck transformations which
agree at e. Let x 2 X be any point and let ↵ be any path in X from e to x. Then the paths '1 �↵
and '2 � ↵ are both lifts of p � ↵ starting at the common point '1(e) = '2(e). By the uniqueness
of lifts, these must be the same path. It follows that their endpoints, '1(x) and '2(x) agree.

12. Wed, Feb. 12

It remains to show that A is surjective. Let f 2 F be any point in the fiber. We wish to produce
a deck transformation ' : X �! X such that '(e) = f . We build the map ' locally and patch
together. Let x 2 X and pick any path ↵ : e  x. Then p↵ is a path in B starting at b and

16



ending at px. By the path-lifting lemma, there is a unique lift fp↵ in X starting at f . We define
'(x) = fp↵(1). From this definition, continuity is not at all clear. But the point is that since
p is a covering, we can choose an evenly-covered neighborhood U of p(x). Let V be the slice of
p�1(U) containing x and V 0 the slice containing '(x) = fp↵(1). Then the restriction of ' to V is
the composition of homeomorphisms

V
p�! U

p � V 0.

By construction, ' will be a covering map, as long as we can verify that it is well-defined. But
if � : e  x is another choice of path, we know that ↵ 'p � because X is simply-connected. It

follows that p↵ 'p p�, and by lifting the path-homotopy, it follows that fp↵ 'p
ep�, so that their

right endpoints agree.
So given f 2 F , we have built a covering map ' : X �! X, but we wanted this to be an

isomorphism. In fact, this last part comes for free if we know that it is injective. This implication
will show up on homework later, so for now it is “left to the reader”. We show that the ' we have
built is indeed injective. Suppose '(x1) = '(x2). Note that since ' is a covering map, this implies
that x1 and x2 are in the same fiber. Let ↵1 : e  x1 and ↵2 : e  x2 be paths. By hypothesis,
gp↵1 = gp↵2. Since X is simply-connected, we know that gp↵1 'p gp↵2. It follows that p↵1 'p p↵2, and
it then follows, by lifting the homotopy, that ↵1 'p ↵2. In particular, ↵1(1) = ↵2(1), so x1 = x2.

We have now established that

A : Aut(X) �! F

is a bijection. We also wanted to show that the resulting bijection � � A : Aut(X) �! ⇡1(B) is a
group isomorphism. It remains only to show that this is a group homomorphism.

Let '1,'2 2 Aut(X). Recall that �(A('1)) is defined as follows: pick any path ↵1 in X from e to
f1 = '1(e). Then �(A('1)) = p � ↵1. Similarly �(A('2)) = p � ↵2. Now A('2 � '1) = '2 � '1(e) =
'2(f1). To compute � of this point, we need a path in X from e to '2(f1). But ↵2 ⇤'2(↵1) is such
a path. Then

�(A('2 � '1)) = �('2(f1)) = p � (↵2 ⇤ '2(↵1)) = p � ↵2 ⇤ p � '2 � ↵1

= p � ↵2 ⇤ p � ↵1 = �(A('2) ⇤ �(A('1)).

⌅

Returning now to our example X �! S1 _ S1, we have identified ⇡1(S1 _ S1) with the group of
deck transformations X ⇠= X. Any transformation can be thought of as a sequence of horizontal
and vertical “moves”. Writing u for an upwards shift and r for a shift to the right, any element of
the group can be described by a seqence of u’s, r’s, and their inverses.

13. Fri, Feb. 14

Definition 13.1. A word in letters u, r, and their inverses is simply a sequence of these letters.
We say the word is reduced if no u�1 is adjacent to a u, and similarly for the r’s. The free group
F2 or F (u, r) on the letters u and r is the set of reduced (including empty) words, where the group
operation is concatenation. The inverse of any word is the same word in reversed order and with
the sign of each letter reversed.

We have shown that ⇡1(S1 _ S1) is the free group on two letters. In particular, this is our first
example of a nonabelian fundamental group.

So far, the only kind of coverings we have studied have been those in which the covering space
is simply connected. Now we will relax this condition and discuss the more general theory.
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Proposition 13.2. Let p : E �! B be a covering. Then the induced map p⇤ : ⇡1(E) �! ⇡1(B) is
injective.

Proof. Let � 2 ⇡1(E) and suppose p⇤(�) = 0. In other words, the loop p � � in B is null. Let
h : I ⇥ I �! B be a null-homotopy. Then this lifts to a homotopy h̃ : I ⇥ I �! E from � (the
unique lift of p � �) to a lift c̃ of the constant loop. Since the constant loop at e is a lift of the
constant loop at b, uniqueness of lifts implies that c̃ is the constant loop. So h̃ is a null-homotopy
for �. ⌅
Example 13.3. The only example of a covering we have discussed thus far in which the covering
space is not simply connected is the n-fold cover S1 �! S1. In this case, the cover clearly sends
the generator of ⇡1(S1) ⇠= Z to n times the generator, and the image of p⇤ is the subgroup nZ < Z.

Given the above result, any covering of B gives rise to a subgroup of ⇡1(B). One might wonder
what subgroups can arise in this way. We will see that, under mild hypotheses on B, every subgroup
arises in this way.

Previously, we have studied lifting paths and path-homotopies against a covering. We can also
generalize this to consider lifting arbitrary maps f : Z �! B.

Proposition 13.4. (Homotopy lifting) Let p : E �! B be a covering and h : Z ⇥ I �! B be a
homotopy between maps f, g : Z ◆ B. Let f̃ be a lift of f . Then there is a unique lift of h to h̃
with h̃0 = f̃ .

Proposition 13.5. (Unique lifting) Let p : E �! B be a covering and f : Z �! B a map, with Z

connected. If f̃ and f̂ are both lifts of f that agree at some point of Z, then they are the same lift.

Note that in the second result, we are not asserting that a lift exists! See Theorems 8.3 and 8.4
of [Lee] for complete proofs.

Here is an alternative approach to Prop 13.4. For this discussion, we assume that B is su�ciently
nice, like locally compact Hausdor↵. More generally, we can work in the land of compactly generated
weak Hausdor↵ spaces. The point is that we want mapping spaces to behave nicely.

We can think of the pair of maps f, g : Z ◆ B as a pair
of points of Map(Z,B). The homotopy h then defines a path in
Map(Z,B) from f to g. Thus Prop 13.4 really just asserts that
we can lift the path h uniquely once we have fixed an initial lift f̃ .
This is precisely the statement of Lemma 11.1, so we just need to
check that the lemma applies. In other words, we want to know
that the induced map

Map(Z, p) : Map(Z,E) �! Map(Z,B)

is a covering map.

Map(Z,E)

Map(Z,p)
✏✏

I

h̃
66

h // Map(Z,B)

Actually, this does not quite work, as the map Map(Z, p) is not
in general surjective. We write Map`(Z,B) for the image of this
map (we think of this as the space of “liftable” maps). On your
homework, you are asked to show that the map

Map(Z, p) : Map(Z,E) �! Map`(Z,B)

is a covering map. You are also asked to show that Map`(Z,B) is
closed and open in Map(Z,B). It follows that if f 2 Map`(Z,B),
then the whole path h is contained in Map`(Z,B). Thus we have re-
duced to a standard path-lifting problem, and Lemma 11.1 finishes
the argument.

Map(Z,E)

Map(Z,p)
✏✏

I

h̃
66

h // Map`(Z,B)
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Here is a sketch of Proposition 13.5.
Sketch. The idea is to show that the subset of Z on which the lifts agree is both open and closed;

it is already given to be nonempty. For any z 2 Z, pick an evenly-covered neighborhood U of f(z).
On the one hand, suppose f̃(z) = f̂(z). Then let V be the component of p�1(U) containing this
point. Then f̃�1(V ) \ f̂�1(V ) is a neighborhood of z on which the lifts agree (since q : V �! U is
a homeomorphism).

On the other hand, if f̃(z) 6= f̂(z), then let Ṽ and V̂ be the components of f̃(z) and f̂(z) in
p�1(U). It follows that f̃�1(Ṽ ) \ f̂�1(V̂ ) is a neighborhood of z on which f̃ and f̂ disagree (they
land in di↵erent components of p�1(U)). ⌅
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