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Let F be a transitive right G-set. Then F' = H\G for some H < G. We assume that B has
a universal cover ¢ : X — B. Recall that we showed in Theorem 11.4 that the group of deck
transformations of X is isomorphic to G.

Proposition 17.1. The action of G on X via deck transformations is free and properly discontin-
UOUS.

Proof. Let x € X and suppose gr = z for some g € G. Recall that here g is a covering homomor-
phism X — X and thus a lift of ¢ : X — B. By the uniqueness of lifts, since g looks like the
identity at the point x, it must be the identity. This shows the action is free.

Again, let x € X. We want to find a neighborhood V' of x such that only finitely many translates
gV meet V. Consider b = ¢q(x). Let U be an evenly-covered neighborhood of . Then ¢~ !(U) =
[1Vi, and « € Vj for some j. Recall that G freely permutes the pancakes V;. In particular, the
only translate of V; that meets V; is the identity translate eV/;. |

According to Homework IV .4, this means that the quotient map X — X/G is a cover. (Really,
this quotient should be written as G\ X, but most people write it as X/G.) If we consider the action
of a subgroup H < G, it is still free and properly discontinuous. So we get a covering

qH X —X / H=Xg
for every H. Moreover, the universal property of quotients gives an induced map

pa: X/H — B.
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Proposition 18.1. The map py : X/H — B is a covering map, and the fiber F is isomorphic
to H\G as a G-set.

Proof. Let b € B. Then we have a neighborhood U which is evenly-covered by ¢. Recall again that
the G-action, and therefore also the H-action, simply permutes the pancakes in p~'(U). We thus
get an action of H on the indexing set Z for the pancakes in p~1(U). If we write W; = qy(V;), we
thus have the diagram

qH PH

¢ (U) —py (U) —=U

i

H Vi —— H W; —=U
i€T JET/H

To see that the restriction of py to a single W, gives a homeomorphism, we use the fact that
qu : V; — Wj is a homeomorphism, since qg : X — Xp is a covering, and that ¢ : V; — U is
a homeomorphism. It follows that py = g o qﬁl is a homeomorphism.
For the identification of the fiber ' C X, notice that the H-action on X acts on each fiber
separately, and the quotient of this action on the fiber of X gives precisely H\G. |
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Example 18.2. Suppose that G = Y3, the symmet- @ZIWO

ric group on 3 letters, and let H = {e, (12)} < G. If 3\ O Hug)v
we take an evenly-covered neighborhood U in B, then (|73V© 9Gn O

the situation described in the proof above is given in (2 O — H(B)\/
the picture to the right.

As an aside, note that Xy here is an example of a (HWQ OHV
covering in which the deck transformations do not act VO PH
transitively on the fibers. q \\ g

To sum up, we have shown that if B has a universal cover, then the assignment (E,p) — F gives
an “equivalence of categories” between coverings of B (Covp) and G-orbits (Orbg). We can also
relate both of these “categories” to subgroups of GG in the following way.

We consider subgroups of G (Subg), and given any two subgroups H, K < G, we consider
homomorphisms H — K that are induced by conjugation by an element v € G. Given H €
Subg, we get a G-orbit H\G. Given a homomorphism con, : H — K, we get an induced map
H\G — K\G defined by Hg — K~g. We have seen (Prop 16.3) that every map between these
orbits is of this form.

We can also relate Subg to Covp in the following way. Given a subgroup H, we have al-
ready constructed the covering X (assuming X exists). And we know, by passing through Orbg,
that conjugation homomorphisms H — K are in bijective correspondence with maps of covering
Xy — Xg. We thus now have equivalences of categories as in the diagram below

COVB

N

Orbg Subg

The last result we need to tie this story together is the existence of universal covers.

Definition 18.3. Let B be any space. A subset U C B is relatively simply connected (in B)
if every loop in U is contractible in B. We say that B is semilocally simply connected if every
point has a relatively simply connected neighborhood.

Theorem 18.4. Let B be very connected. Then there exists a universal cover X — B if and only
if B is semilocally simply connected.

Proof. For convenience, we fix a basepoint by € B.

We start by working backwards. That is, suppose that ¢ : X — B exists. Given a point b € B,
what can we say about the fiber ¢~ 1(b)? Pick a basepoint zg € ¢~*(by). Then, for each f € ¢~1(b),
we get a (unique) path-homotopy class of paths « : g ~ f. Composing with the covering map ¢
gives a (unique) path-homotopy class of paths g o« : by ~» b. This now gives a description of the
fiber ¢~1(b) purely in terms of B.

We now take this as a starting point. As a set, we take X to be the set of path-homotopy classes
of paths starting at by. The map ¢ : X — B takes a class [y] to the endpoint v(1). It remains to
(1) topologize X, (2) show that ¢ is a covering map, and (3) show that X is simply-connected.
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We specify the topology on X by giving a basis. Let v be a path in B starting at by. Let U
be any relatively simply-connected neighborhood of the endpoint v(1). Define a subset U[y] C X
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to be the set of equivalence classes of paths of the form [yd], where 6 : I — U is a path in U.
These cover X since each [7] is contained in some U[y], since B is semilocally simply-connected.
Now suppose that v € Uy[y1] N Uz[y2]. Then the intersection U = Uy N Uy of two relatively simply
connected subsets of B is again relatively simply connected. Thus

v € U] C Ui[n] N Uslyel.

We have shown that the U[y] give a basis for a topology on X.

Next, we show that ¢ is continous. Let V' C B be open and let ¢([7]) € V, so that y(1) € V. Then
we can find a relatively simply connected U satisfying v(1) € U C V. So U[y] is a neighborhood of
[v] in ¢~ 1(V), as desired.

Since B is path-connected, it follows that g is surjective. Let b € B and let b € U be a path-
connected, relatively simply-connected neighborhood. We claim that U is evenly covered by g¢.
First, we claim that

'0= {J Uhl
[vl€q~(b)
It is clear that the RHS is contained in the LHS. Suppose that ¢([o]) € U. Then «(1) € U and
we may pick a path 0 : a(l) ~ b in U. Then a € Ulad]. By the definition of the topology on
X, each U[v] is open. Finally, we wish to show that this is a disjoint union. Thus suppose that
[a] € Uly1] N U[yz2]. This means that

[a] = [7101] = [7202].
In other words,
[y10102] = [72]-
Since U is relatively simply-connected, this implies that [y;] = [y2]. So any two overlapping U|[Y]
are in fact the same. To finish the proof that ¢ is a covering, we need to show that ¢ restricts to a

homeomorphism ¢ : U[y] 5U. Surjectivity follows from the assumption that U is path-connected.
Injectivity is the relatively simply-connected hypothesis. Finally, g takes any basis V[\] to the open
set V, so it is open. We have shown that ¢ is a covering map.

The final step is to show that X is very connected and simply connected. It is clear that X is
locally path-connected. Next, we show that X is path-connected (and therefore connected). Let
[7] € X. We define a path h in X from the constant path [cy,] to [y] by h(s) = [¥],g]- In the
interest of time, we skip the verification that h is continuous (but see Lee, proof of Theorem 11.43).

To see that X is simply connected, let I" be a loop in X at the basepoint [cp,]. Write y =¢goT.
Then T is a lift of «, but so is the loop s — [y[pq]. By uniqueness of lifts, [['(s)] = [y(o,q)]- Then,
since I' is a loop, we have

V] = oyl = T@)] = [L(0)] = Dyo,0)) = [evo]-
In other words, v is null. Since ¢ is a covering, this implies that I' is null as well. [
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