
20. Mon, Mar. 3

Dashing through the snow, in a one-horse open sleigh. . .

21. Wed, Mar. 5

Exam Day!!

Long time the manxome foe he sought—
So rested he by the Tumtum tree,
And stood awhile in thought.

22. Fri, Mar. 7

Last time (week), we showed that if a space is semilocally simply-connected, then it has a
universal cover. So to provide an example of a space without a universal cover, it su�ces to give
an example of a space with a point which has no relatively simply connected neighborhood.

Example 22.1 (The Hawaiian earring). Let Cn ✓ R2 be the circle of radius 1/n centered at
(1/n, 0). So each such circle is tangent to the origin. Let C = [nCn. We claim that the origin
has no relatively simply connected neighborhood. Indeed, let U be any neighborhood of the origin.
Then for large enough n, the circle Cn is contained in U . A loop ↵ that goes once around the circle
Cn is not contractible in C. To see this, note that the map rn : C �! S1 which collapses every
circle except for Cn is a retraction. The loop r � ↵ is not null, so ↵ can’t be null.

This example looks like an infinite wedge of circles, but it is not just a wedge. For instance,
in each Cn consider an open interval Un of radian length 1/n centered at the origin. The union
U = [nUn of the Un’s is open in the infinite wedge of circles but not in C, since no ✏-neighborhood
of the origin is contained in U .

? ? ? ? ? ? ??
                 

? ? ? ? ? ? ??

The focus of the next unit of the course will be on computation of fundamental groups.
One example we have already studied is the fundamental group of S1 _ S1. We saw that this is

the free group on two generators. We will see similarly that the fundamental group of S1 _S1 _S1

is a free group on three generators (the generators are the loops around each circle). We will also
want to compute the fundamental group of the two-holed torus (genus two surface), the Klein
bottle, and more.

The main idea will be to decompose a space X into smaller pieces whose fundamental groups are
easier to understand. For instance, if X = U [V and we understand ⇡1(U), ⇡1(V ), and ⇡1(U \V ),
we might hope to recover ⇡1(X).

Proposition 22.2. Suppose that X = U [ V , were U and V are path-connected open subsets and
both contain the basepoint x0. If U \V is also path-connected, then the smallest subgroup of ⇡1(X)
containing the images of both ⇡1(U) and ⇡1(V ) is ⇡1(X) itself.

In group theory, we would say ⇡1(X) = ⇡1(U)⇡1(V ).
Note that we really do need the assumption that U \ V is path-connected. If we consider U

and V to be open arcs that together cover S1, then both U and V are simply-connected, but their
intersection is not path-connected. Note that here that the product of two trivial subgroups is not
⇡1(S1) ⇠= Z!
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Proof. Let � : I �! X be a loop at x0. By the Lebesgue number lemma, we can subdivide the
interval I into smaller intervals [si, si+1] such that each subinterval is taken by � into either U or
V . We write �1 for the restriction of � to the first subinterval. Suppose, for the sake of argument,
that �1 is a path in U and that �2 is a path in V . Since U \ V is path-connected, there is a path
�1 from �1(1) to x0. We may do this for each �i. Then we have

[�] = [�1] ⇤ [�2] ⇤ [�3] ⇤ · · · ⇤ [�n] = [�1 ⇤ �1] ⇤ [��1
1 ⇤ �2 ⇤ �2] ⇤ · · · ⇤ [��1

n�1 ⇤ �n]
This expresses the loop � as a product of loops in U and loops in V . ⌅

This is a start, but it is not the most convenient formulation. In particular, if we would like to
use this to calculate ⇡1(X), then thinking of the product of ⇡1(U) and ⇡1(V ) inside of ⇡1(X) is
not so helpful. Rather, we would like to express this in terms of some external group defined in
terms of ⇡1(U) and ⇡1(V ). We have homomorphisms

⇡1(U) �! ⇡1(X), ⇡1(V ) �! ⇡1(X),

and we would like to put these together to produce a map from some sort of product of ⇡1(U) and
⇡1(V ) to ⇡1(X). Could this be the direct product ⇡1(U)⇥⇡1(V )? No. Elements of ⇡1(U) commute
with elements of ⇡1(V ) in the product ⇡1(U) ⇥ ⇡1(V ), so this would also be true in the image of
any homomorphism ⇡1(U)⇥ ⇡1(V ) �! ⇡1(X).

What we want instead is a group freely built out of ⇡1(U) and ⇡1(V ). The answer is the free
product ⇡1(U) ⇤ ⇡1(V ) of ⇡1(U) and ⇡1(V ). Its elements are finite length words g1g2g3g4 . . . gn,
where each gi is in either ⇡1(U) or in ⇡1(V ). Really, we use the reduced words, where none of the
gi is allowed to be an identity element and where if gi 2 ⇡1(U) then gi+1 2 ⇡1(V ).

Example 22.3. We have already seen an example of a free product. The free group F2 is the free
product Z ⇤ Z.

Example 22.4. Similarly, the free group F3 on three letters is the free product Z ⇤ Z ⇤ Z.

Example 22.5. Let C2 be the cyclic group of order two. Then the free product C2 ⇤ C2 is an
infinite group. If we denote the nonidentity elements of the two copies of C2 by a and b, then
elements of C2 ⇤ C2 look like a, ab, ababa, ababababa, bababa, etc.

Note that there is a homomorphism C2 ⇤ C2 �! C2 that sends both a and b to the nontrivial
element. The kernel of this map is all words of even length. This is the (infinite) subgroup generated
by the word ab (note that ba = (ab)�1). In other words, C2 ⇤C2 is an extension of C2 by the infinite
cyclic group Z. Another way to say this is that C2 ⇤ C2 is a semidirect product of C2 with Z.
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