20. MonN, MAR. 3

DASHING THROUGH THE SNOW, IN A ONE-HORSE OPEN SLEIGH. ..

21. WED, MAR. 5

ExamMm DAy!! )
Long time the manxome foe he sought—

So rested he by the Tumtum tree,
And stood awhile in thought.

22. Fri, MAR. 7

Last time (week), we showed that if a space is semilocally simply-connected, then it has a
universal cover. So to provide an example of a space without a universal cover, it suffices to give
an example of a space with a point which has no relatively simply connected neighborhood.

Example 22.1 (The Hawaiian earring). Let C,, C R? be the circle of radius 1/n centered at
(1/n,0). So each such circle is tangent to the origin. Let C' = U,C,. We claim that the origin
has no relatively simply connected neighborhood. Indeed, let U be any neighborhood of the origin.
Then for large enough n, the circle C), is contained in U. A loop « that goes once around the circle
C,, is not contractible in C. To see this, note that the map r, : C — S which collapses every
circle except for C, is a retraction. The loop r o & is not null, so « can’t be null.

This example looks like an infinite wedge of circles, but it is not just a wedge. For instance,
in each (), consider an open interval U, of radian length 1/n centered at the origin. The union
U = U,U, of the U,,’s is open in the infinite wedge of circles but not in C, since no e-neighborhood
of the origin is contained in U.
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The focus of the next unit of the course will be on computation of fundamental groups.

One example we have already studied is the fundamental group of S* vV S!. We saw that this is
the free group on two generators. We will see similarly that the fundamental group of S'v St v S!
is a free group on three generators (the generators are the loops around each circle). We will also
want to compute the fundamental group of the two-holed torus (genus two surface), the Klein
bottle, and more.

The main idea will be to decompose a space X into smaller pieces whose fundamental groups are
easier to understand. For instance, if X = UUV and we understand 1 (U), m1(V), and m (UNV),
we might hope to recover m(X).

Proposition 22.2. Suppose that X = U UV, were U and V' are path-connected open subsets and
both contain the basepoint xo. If UNV is also path-connected, then the smallest subgroup of m1(X)
containing the images of both w1 (U) and w1 (V') is m1(X) itself.

In group theory, we would say 71(X) = m (U)m (V).

Note that we really do need the assumption that U NV is path-connected. If we consider U
and V to be open arcs that together cover S', then both U and V are simply-connected, but their
intersection is not path-connected. Note that here that the product of two trivial subgroups is not
m (St = 2!
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Proof. Let v : I — X be a loop at zg. By the Lebesgue number lemma, we can subdivide the
interval I into smaller intervals [s;, s;+1] such that each subinterval is taken by ~ into either U or
V. We write v for the restriction of + to the first subinterval. Suppose, for the sake of argument,
that -1 is a path in U and that 7, is a path in V. Since U NV is path-connected, there is a path
91 from 71 (1) to xg. We may do this for each 7;. Then we have

(] = [ [a) # [ya) % - % [y = [y 80 # [671 o % B - (8,2 %y
This expresses the loop v as a product of loops in U and loops in V. |

This is a start, but it is not the most convenient formulation. In particular, if we would like to
use this to calculate 71(X), then thinking of the product of m1(U) and 71 (V) inside of m(X) is
not so helpful. Rather, we would like to express this in terms of some external group defined in
terms of 71 (U) and 71 (V). We have homomorphisms

m(U) — m(X), m (V) — m(X),

and we would like to put these together to produce a map from some sort of product of 71 (U) and
m1(V) to m1(X). Could this be the direct product 71 (U) x 71 (V)7 No. Elements of 71 (U) commute
with elements of 71 (V) in the product m (U) x m1(V'), so this would also be true in the image of
any homomorphism 71 (U) x m1(V) — m1(X).

What we want instead is a group freely built out of 71 (U) and 71 (V). The answer is the free
product 71 (U) * 71(V) of 71 (U) and 71(V). Its elements are finite length words ¢1929394 - - - gn,
where each g; is in either m1(U) or in 71 (V). Really, we use the reduced words, where none of the
g; is allowed to be an identity element and where if g; € 71 (U) then g;y1 € m (V).

Example 22.3. We have already seen an example of a free product. The free group F5 is the free
product Z x Z.

Example 22.4. Similarly, the free group F3 on three letters is the free product Z x Z * Z.

Example 22.5. Let Cs be the cyclic group of order two. Then the free product Co * Cs is an
infinite group. If we denote the nonidentity elements of the two copies of C5 by a and b, then
elements of Cs x Cy look like a, ab, ababa, ababababa, bababa, etc.

Note that there is a homomorphism Cy x Cy — C5 that sends both a and b to the nontrivial
element. The kernel of this map is all words of even length. This is the (infinite) subgroup generated
by the word ab (note that ba = (ab)™!). In other words, Cs * Cs is an extension of Cy by the infinite
cyclic group Z. Another way to say this is that Cy * Cs is a semidirect product of Co with Z.
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