
23. Mon, Mar. 10

The free product has a universal property, which should remind you of the property of the
disjoint union of spaces XqY . First, for any groups H and K, there are inclusion homomorphisms
H �! H ⇤K and K �! H ⇤K.

Proposition 23.1. Suppose that G is any group with homomorphisms 'H : H �! G and
'K : K �! G. Then there is a (unique) homomorphism � : H ⇤ K �! G which restricts to
the given homomorphisms from H and K.

Our result from last time can be restated as follows:

Proposition 23.2. Suppose that X = U [V , where U and V are path-connected open subsets and
both contain the basepoint x0. If U \ V is also path-connected, then the natural homomorphism

� : ⇡1(U) ⇤ ⇡1(V ) �! ⇡1(X)

is surjective.

Now that we have a surjective homomorphism to ⇡1(X), the next step is to understand the kernel
N . Indeed, then the First Isomorphism Theorem will tell us that ⇡1(X) ⇠= ⇡1(U) ⇤ ⇡1(V )/N . Here
is one way to produce an element of the kernel. Consider a loop ↵ in U \ V . We can then consider
its image ↵U 2 ⇡1(U) and ↵V 2 ⇡1(V ). Certainly these map to the same element of ⇡1(X), so
↵U↵

�1
V is in the kernel.

Proposition 23.3. With the same assumptions as above, the kernel K of ⇡1(U)⇤⇡1(V ) �! ⇡1(X)
is the normal subgroup N generated by elements of the form ↵U↵

�1
V .

Recall that the normal subgroup generated by the elements ↵U↵
�1
V can be characterized either

as (1) the intersection of all normal subgroups containing the ↵U↵
�1
V or (2) the subgroup generated

by all conjugates g↵U↵
�1
V g�1.

Proof. Again, it is clear that the kernel K must contain the subgroup N . It remains to show that
K  N . Consider an element of K. For simplicity, we assume it is ↵1 ·�1 ·↵2, where ↵i 2 ⇡1(U) and
�1 2 ⇡1(V ). The assumption that this is in K means that there exists a homotopy H : I⇥ I �! X
from the path composition ↵1 ⇤ �1 ⇤ ↵2 in X to the constant loop.

24. Wed, Mar. 12

By the Lebesgue lemma, we may subdivide the square
into smaller squares such that each small square is taken
by H into either U or V . Again, we suppose for simplicity
that this divides ↵1 into ↵11 and ↵12 and �1 into �11 and
�12 (and ↵2 is not subdivided).
Note that we cannot write

↵1 · �1 · ↵2 = ↵11 · ↵12 · �11 · �12 · ↵2

in ⇡1(U) ⇤ ⇡1(V ) since these are not all loops. But we
can fix this, using the same technique as in the proof of
Prop 22.2. In other words, we append a path � back to x0
at the end of every path on an edge of a square. If that
path is in U (or V or U \ V ), we take � in U (or V or
U \ V ). Also, if the path already begins or ends at x0,
we do not append a �. For convenience, we keep the same
notation, but remember that we have really converted all
of these paths to loops.
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Let us turn our attention now to the homotopy H on the first (lower-left) square. Either H takes
this into U or into V . If it is U , then we get a path homotopy in U ↵11 'p �1 · v�1

1 . If, on the
other hand, H takes this into V , then it follows that ↵11 is really in U \ V . This gives us a path
homotopy in V ↵11 'p �1 · v�1

1 . But the group element ↵11 comes from ⇡1(U) in the free product
⇡1(U) ⇤ ⇡1(V ). We would like to replace this with the element ↵11 from ⇡1(V ).

Lemma 24.1. Let � be any loop in U \ V . Then, in the quotient group Q =
�
⇡1(U) ⇤ ⇡1(V )

�
/N ,

the elements �U and �V are equivalent.

Proof. The point is that

�V N = �U�
�1
U �V N = �U ·

⇣
(��1)U (�

�1)�1
V

⌘
N = �UN.

⌅
From here on out, we work in the quotient group Q. The goal is to show that the original element

↵1 · �1 · ↵2 is trivial in Q. According to the above, we can replace (↵1)U (�1)V (↵2)U with either

(�1)U (v
�1
1 )U (↵12)U (�11)V (�12)V (↵2)U

or
(�1)V (v

�1
1 )V (↵12)U (�11)V (�12)V (↵2)U .

We then do the same with each of ↵12, . . . , ↵2. The resulting expression will have adjacent terms
vi and v�1

i . For the same i, these two loops may have the same label (U or V ) or di↵erent labels.
But by the lemma, we can always change the label if the loop lies in the intersection. So we get
the path-composition of the paths along the top edges of the bottom squares. We then repeat
the procedure, moving up rows until we get to the very top. But of course the top edges of the
top squares are all constant loops. It follows that we end up with the trivial element (of Q). So
K = N . ⌅

There is another, more elegant, way to state the Van Kampen theorem.

Definition 24.2. Suppose given a pair of group homomorphisms 'G : H �! G and 'K : H �! K.
We define the amalgamated free product (or simply amalgamated product) to be the quotient

G ⇤H K = G ⇤K/N,

where N EG ⇤K is the normal subgroup generated by elements of the form 'G(h)'K(h)�1.

It is easy to check that the amalgamated free product satisfies the universal property of the pushout
in the category of groups.

Theorem 24.3 (Van Kampen, restated). . Let X be given as a union of two open, path-connected
subsets U and V with path-connected intersection U \ V . Then the inclusions of U and V into X
induce an isomorphism

⇡1(U) ⇤⇡1(U\V ) ⇡1(V )
⇠=�! ⇡1(X).

Since the pasting lemma tells us that in this situation, X can itself be written as a pushout, the
Van Kampen theorem can be interpreted as the statement that, under the given assumptions, the
fundamental group construction takes a pushout of spaces to a pushout of groups.

One important special case of this result is when U \ V is simply connected.

Example 24.4. Take X = S1 _ S1. Take U and V to be neighborhoods of the two circles, so
that the intersection U \ V looks like an ‘X’. Then U \ V is contractible, and U and V are both
equivalent to S1. We conclude from this that

⇡1(S
1 _ S1) ⇠= ⇡1(S

1) ⇤ ⇡1(S1) ⇠= Z ⇤ Z ⇠= F2.
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Example 24.5. Take X = S1 _ S1 _ S1. We can take U to be a neighborhood of S1 _ S1 and V
to be a neighborhood of the remaining S1. Then

⇡1(S
1 _ S1 _ S1) ⇠= (Z ⇤ Z) ⇤ Z ⇠= F3.

25. Fri, Mar. 14

A natural question now is whether ⇡1(X _Y ) is always the free product of the ⇡1(X) and ⇡1(Y ).
Not quite, but a mild assumption allows us to make the conclusion. Note that in the S1 _ S1

example, we needed to know that the neighborhoods U and V were homotopy equivalent to S1

(and that the intersection was contractible).

Definition 25.1. We say that x0 2 X is a nondegenerate basepoint for X if x0 has a neigh-
borhood U such that x0 is a deformation retract of U .

Proposition 25.2. Let x0 and y0 be nondegenerate basepoints for X and Y , respectively. Then

⇡1(X _ Y ) ⇠= ⇡1(X) ⇤ ⇡1(Y ).

Proof. Suppose that x0 is a deformation retract of the neighborhood NX ✓ X and that y0 is a
deformation retract of the neighborhood NY ✓ Y . Let U = X _ NY and V = NX _ Y . Then
U \V = NX _NY . The retracting homotopies for NX and NY give U ' X, V ' Y , and U \V ' ⇤.
The van Kampen theorem then gives the conclusion. ⌅
Aside. Last time, I mentioned an example of a group G and subgroup H which was conjugate to
a proper subgroup of itself. I want to observe another consequence of this example. The group G
was

G = ha, b | bab�1 = a2i,
and the subgroup H was hai. Then clearly bHb�1 = ha2i < H. This group G is called a Baumslag-
Solitar group.

Note that the map � : H\G �! H\G defined by �(Hg) = Hbg is well-defined since bHb�1 < H.
This function is necessarily surjective, sinceH\G is a transitive G-set. But I claim it is not injective.
To see this, first note that

�(Hb�1a) = Hbb�1a = Ha = H = �(Hb�1).

Next, we can see that Hb�1a 6= Hb�1 or, equivalently, Hb�1ab 6= H. This holds because b�1ab is
a square root of a and is not in H. Thus � is a self-map of H\G which is not an isomorphism.

We can then transport this statement about G-orbits to a statement about coverings. Let X be
a space equipped with a free, properly discontinuous G-action, and let B = G\X. As usual, we
let XH = H\X, which then covers B. We know that the map � described above corresponds to a
covering transformation XH �! XH , but in this case it is not a homeomorphism.
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