Math 752 - Hopf algebras Homework 2 Spring 2017

- 1. Let *C* be an *R*-coalgebra and *A* and *R*-algebra. Show that the convolution product makes Hom(C, A) into an *R*-algebra with unit $\eta \varepsilon$.
- 2. Show that if *A* is commutative, then $\chi^2 = id$. (Hint show that $\chi^2 * \chi = \eta \varepsilon$.)
- 3. Consider $k\langle x,g \rangle / (x^2, g^2 = 1, xg + gx)$, where char(k) \neq 2. Set

$$\Delta(g) = g \otimes g, \qquad \varepsilon(g) = 1,$$

 $\Delta(x) = x \otimes 1 + g \otimes x, \qquad \varepsilon(x) = 0.$

This defines a bialgebra which is neither commutative nor cocommutative (you do not need to show this). Show that this has an antipode making it a Hopf algebra, but such that $\chi^2 \neq id$.

4. Consider the commutative \mathbf{F}_2 -bialgebra $B = \mathbf{F}_2[x_1, x_3]/(x_1^4, x_3^2)$, where deg $(x_i) = i$, such that $\Delta(x_3) = x_3 \otimes 1 + x_1^2 \otimes x_1 + 1 \otimes x_3$. Compute the antipode on *B*, and describe the dual Hopf algebra.