Math 752 - Hopf algebras Homework 3 Spring 2017

1. Let \mathcal{P} be a finite poset and R a commutative ring. Denote by $I(\mathcal{P})$ the set of intervals in \mathcal{P} , in other words the set of pairs (a, b) where $a \leq b$. If f and g are functions $I(\mathcal{P}) \longrightarrow R$, define their convolution by the formula

$$(f * g)(a,b) = \sum_{a \le x \le b} f(a,x)g(x,b).$$

- (a) Show that the function $\delta(a, b) := \begin{cases} 1 & a = b \\ 0 & \text{else} \end{cases}$ is the identity element in the convolution algebra.
- (b) Denote by $\zeta : I(\mathcal{P}) \longrightarrow R$ the constant function at 1. Define the Möbius function μ recursively by $\mu(x, x) = 1$ and $\mu(x, y) := -\sum_{x \le z < y} \mu(x, z)$ if x < y. Show that μ is inverse to ζ in the convolution algebra.
- (c) (Möbius inversion) Suppose that $\{M_x \mid x \in \mathcal{P}\}$ is a basis for *V* and define a new basis by $F_x := \sum_{y \ge x} M_y$. Show that $\{M_x\}$ can be recovered from $\{F_y\}$ by the formula

$$M_x = \sum_{y \ge x} \mu(x, y) F_y.$$

- 2. Show that, in the map $\mathcal{R} : \mathcal{N}Sym \longrightarrow \mathcal{T}$ of Proposition 15.1, the assignment $\mathcal{R}(H_n) = R_n$ preserves coproducts.
- 3. The **nilpotence height** of an element $x \in A$ is the smallest natural number k such that $x^k = 0$. Find the nilpotence height for Sq^{*i*}, for i = 1, ..., 7.