Math 752 - Hopf algebras Homework 4 Spring 2017

- 1. (a) Show by induction that $z_1^{2^k} = 2^k \vee$.
 - (b) Let $J_2 \subseteq A_*$ be the Hopf ideal $J_2 = (z_1^8, z_2^4, z_3^2, z_4, z_5, ...)$. Then $A(2) \subseteq A$ is, by definition, the subset of elements which vanish on J_2 . Show that $\boxed{1}$, $\boxed{2}$, and $\boxed{4}$ vanish on (the generators of) J_2 and are therefore in A(2). Show also that $\boxed{2^k}$, for $k \ge 3$, is not in A(2).
- 2. Problem 3 on Worksheet 2 introduced the idea of "stripping" by z_1 to deduce Adem relations. Convince yourself that stripping by z_1^2 or z_1^4 (or $z_1^{2^k}$) works just as well. Use this to compute $\boxed{6}^2$ and $\boxed{6}^3$.
- 3. Compute the cohomology $H^*(\mathbf{F}_2[x_1]/x_1^4)$. (Hint: build a periodic resolution.)