Math 651 - Topology II Homework II Spring 2018

- 1. Show that a map $f : S^1 \longrightarrow X$ is null if and only if there exists a map $g : D^2 \longrightarrow X$ which restricts to f on $S^1 = \partial D^2$ (we say g extends the map f). (Hint: Find a homeomorphism $D^2 \cong (S^1 \times I)/(S^1 \times \{1\})$.)
- (a) Let *A* be a set with two associative binary operations, · and ★. Suppose that *e* ∈ *A* is a left and right unit for both · and ★. Finally, suppose that for any elements *a*, *b*, *c*, *d* in *A*, these operations satisfy

 $(a \cdot b) \star (c \cdot d) = (a \star c) \cdot (b \star d).$

Show that $a \cdot b = a \star b$ and that both operations are commutative.

- (b) Let *G* be any topological group. Use the above to show that $\pi_1(G, e)$ is necessarily abelian.
- 3. Does the Borsuk-Ulam theorem also hold for the torus? That is, given a map $f: S^1 \times S^1 \longrightarrow \mathbb{R}^2$, must there be a point (x, y) such that f(x, y) = f(-x, -y).
- 4. Let *X* be path-connected. Show that $\pi_1(X)$ is abelian if and only if the changeof-basepoint homomorphisms $\Phi_{\alpha} : \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1)$ do not depend on the choice of path α .
- 5. A **free loop** in a space *X* is a map $S^1 \longrightarrow X$ with no condition on the basepoint. Since $\pi_1(X, x_0) \cong [S^1, (X, x_0)]_*$, there is a natural map

$$\Lambda:\pi_1(X,x_0)\longrightarrow [S^1,X].$$

- (a) Show that Λ is surjective if and only if *X* is path-connected.
- (b) Show that $\Lambda([\gamma]) = \Lambda([\delta])$ if and only if the loops γ and δ are conjugate in $\pi_1(X, x_0)$.