Math 651 - Topology II Homework IV Spring 2018

- 1. Suppose that $p : E \longrightarrow B$ is a nonsurjective covering map. That is, it satisfies the neighborhood condition but is not surjective. Show that the $p(E) \subseteq B$ is closed and open.
- 2. Suppose *G* acts on a space *X*. We say the action is **free** if, for every *x*, we have gx = x only for g = e. We say the action is **properly discontinuous** if every $x \in X$ has a neighbohood *U* such that *U* meets g(U) only for finitely many $g \in G$.

Show that if *G* acts freely and properly disontinuously on a Hausdorff space *X*, then $X \longrightarrow X/G$ is a covering map.

- 3. Find a space having fundamental group C_3 , the cyclic group of order three.
- 4. (a) Describe a covering of $S^1 \vee S^1$ by the space *E* given in the picture below:

- (b) Take the point labelled as 0 as the basepoint for *E*. What is the image under your covering map *p* of the loop around the circle at 0? What about the loop (at 0) around the circle at 1?
- (c) Show that the two loops in *E* described in part (2) are not homotopic. Use this to show that $\pi_1(S^1 \vee S^1)$ is not abelian.
- 5. Let E_1 and E_2 be simply connected coverings of B_1 and B_2 , respectively. Show that if $B_1 \simeq B_2$ then $E_1 \simeq E_2$. As usual, you may assume all spaces are very connected.
- 6. (*) Find a simply connected covering of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.