Math 651 - Topology II Homework V Spring 2018

- 1. Let $q : X \longrightarrow B$ be a simply-connected covering. We showed in class that $Aut(X) \cong G = \pi_1(B)$. This gives a left action of *G* on *X*, and this action restricts to an action on any fiber. But we also discussed a right *G*-action on the fiber for any covering.
 - (a) Let $q : \mathbb{R}^2 \longrightarrow S^1 \times S^1$ be the universal covering of the torus. Show the two above actions are the same.
 - (b) Let $q : X \longrightarrow S^1 \lor S^1$ be the (fractal) simply-connected covering discussed in class. Show that in this case the two actions *do not* coincide! (Hint: Denote by α and β the loops around the two circles in $S^1 \lor S^1$. Determine (carefully) the action of $\alpha\beta$ on a point in the fiber under the two described actions.)
- 2. Use the van Kampen theorem to show that S^n is simply-connected if $n \ge 2$.
- 3. Show that if $x_0 \in X$ is a 0-cell for a finite CW structure on X, then x_0 is a nondegenerate basepoint. (The statement is true more generally without the finiteness hypothesis).
- 4. (*a*) Show that in the Hawaiian earring (Example 2.26 in the notes), the point (0,0) is **not** a nondegenerate basepoint. In other words, show that no neighborhood of (0,0) deformation retracts onto (0,0).
 - (*b*) If no basepoint of *X* is nondegenerate, there is a way of adding in a good basepoint without changing the homotopy type. The process, known as "attaching a whisker to *X*", is to consider the space $X \vee I$. If we glue *I* to *X* along the point $0 \in I$, show that $1 \in I$ is a nondegenerate baspoint for $X \vee I$.
 - (*c*) Show that $X \vee I$ is homotopy equivalent to *X*.