Math 651 - Topology II Homework VI Spring 2018

- 1. Let *x* and *y* be any two (distinct) points in \mathbb{R}^3 . Use the van Kampen theorem to compute $\pi_1(\mathbb{R}^3 \{x, y\})$.
- 2. Let *X* be \mathbb{R}^3 with two of the coordinate axes removed. Compute $\pi_1(X)$. (Hint: Start by showing that *X* is homotopy equivalent to S^2 with four points removed.)
- 3. (*a*) Show that for any space *A*, the cone $C(A) = (A \times I)/(A \times \{1\})$ is contractible. (Hint: What happens in the case that *A* is empty?)
 - (*b*) Let $f : A \longrightarrow X$ be a based map between path-connected spaces. Then form the union

$$C(f) = X \cup_A C(A),$$

where *A* is included in C(A) at height 0. This construction is known as the mapping cone of *f*. Show that

$$\pi_1(C(f)) \cong \pi_1(X)/N,$$

where *N* is the normal subgroup generated by the image of $f_* : \pi_1(A) \longrightarrow \pi_1(X)$.

- (*c*) Let *G* be a finitely-generated group, meaning that there is a surjection $F_n \longrightarrow G$ for some *n*. Find a (path-connected) space *X* with $\pi_1(X) \cong G$.
- 4. Find $\pi_1(\mathbb{RP}^2 \{x, y\})$, where $x \neq y$. (Hint: First find $\pi_1(\mathbb{RP}^2 \{z\})$.)
- 5. Let *X* be the quotient of S^2 obtained by identifying the north and south poles to a single point. Put a CW structure on *X* and use this to compute $\pi_1(X)$.