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Here are a list of main topics for this semester:

(1) the fundamental group (topology  algebra) (Hatcher - Ch. 1.1; Lee - Ch. 7, Ch. 8)
(2) the theory of covering spaces (Hatcher - Ch. 1.3; Lee - Ch. 11, Ch. 12)

Example 0.1.
(a) What spaces cover R? Only R itself. Every covering map E �! R is a homeomorphism.
(b) What spaces cover S1? There is the n-sheeted cover of S1 by itself, for any nonzero

integer n. (Wrap the circle around itself n times.) There is also the exponential map
R �! S1.

(c) What spaces cover S2? Only S2 itself. Every covering map E �! S2 is a homeomor-
phism.

(d) What spaces cover RP2? There is the defining quotient map S2 �! RP2 and the
homeomorphisms.

(3) computation of the fundamental group via the Seifert-van Kampen theorem. (Hatcher -
Ch. 1.2, Lee - Ch. 9, Ch. 10)

(4) classification of surfaces (compact, connected) and the Euler characteristic. (Lee - Ch. 6,
Ch. 10)

(5) homology of CW complexes (Hatcher - Ch. 2.1, Lee - Ch. 13)

The fundamental group, an algebraic object, will turn out to be crucial for understanding topics
in geometric topology (coverings, surfaces).
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1. The fundamental group - Examples

Our first major result in the course will be the computation of the fundamental group of the
circle. In particular, we will show that it is nontrivial! The argument will involve a number of
new ideas, and one thing I hope you will learn from this course is that computing fundamental
groups is hard!

1.1. The fundamental group of S1. Today, we begin the discussion of the fundamental group of
S1. We will need the following technical result that could have been included in the fall semester.

Proposition 1.1. (Lebesgue number lemma)[Lee, 7.18] Let U be an open cover of a compact metric

space X. Then there is a number � > 0 such that any subset A ✓ X of diameter less than � is

contained in an open set from the cover.

For any n, consider the loop in S1 given by �
n

(t) = e2⇡int. For today, we will denote the standard
basepoint of S1, the point (1, 0), by the symbol ?.

Theorem 1.2. The assignment n 7! �
n

is an isomorphism of groups

� : Z
⇠=�! ⇡1(S

1, ?).

Proof. Let’s start by showing that it is a homomorphism. First note that �0 is the constant path at
1, which is the identity element of the fundamental group. Also, note that ��n

is the path-inverse
of �

n

. It then remains to show that the path �
n

· �
k

is path-homotopic to �
n+k

when n and k are
non-negative.

For any 0  c  1, we can define a path which first traverses �
n

on the time interval [0, c] and
then traverses �

k

on the time interval [c, 1]. Any two choices of c gives homotopic paths. The choice
c = 1/2 gives the usual path-composition �

n

· �
k

, whereas the choice c = n/(n+ k) gives �
n+k

.

To show that � is also a bijection, we will rely on the exponential map

p :R �! S1

t 7! e2⇡it.

Note that p�1(?) = Z. One important property of this map that we will need is that we can cover
S1, say using the open sets U1 = S1 \ {(1, 0)} and U2 = S1 \ {(�1, 0)}. On each of these open sets
U
i

, the preimage p�1(U
i

) is a (countably infinite) disjoint union of subsets V
i,j

of R, and p restricts
to a homeomorphism p : V

i,j

⇠= U
i

.

If f : X �! S1 is a map from some space X, then by a lift
f̃ : X �! R we mean simply a map such that p � f̃ = f .

R
p

✏✏

X
f

//

f̃

>>

S1

Fri, Jan. 12

Lemma 1.3. Let � : I �! S1
be a loop at ? and let n 2 Z. Then there is a unique lift �̃ : I �! R

such that �̃(0) = n.

Proof. By the Lebesgue number lemma applied to I, there is a subdivision of I into subintervals
[s

i

, s
i+1] such that each subinterval is contained in a single ��1(U

i

).

Consider the first such subinterval [0, s1] ✓ ��1(U2). Now our
lifting problem simplifies to that on the right. The interval [0, s1]
is connected, so the image of �̃ must lie in a single component
V1,j . And we have no choice of the component since we have
already decided that �̃(0) must be n. Call the component V2,0.

qV2, j

p

✏✏
[0, s1]

�

//

�̃

::

U2
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Now our lifting problem reduces to lifting against the homeomorphism p2,0 : V2,0
⇠= U2, and we

define our lift on [0, s1] to be the composite p�1
2,0 ��. Now play the same game with the next interval

[s1, s2]. We already have a lift at the point s1, so this forces the choice of component at this stage.
By induction, at each stage we have a unique choice of lift on the subinterval [s

k

, s
k+1]. Piecing

these all together gives the desired lift �̃ : I �! R. ⌅
Thus given a loop � at ?, there is a unique lift �̃ : I �! R that starts at 0. The endpoint of the

lift �̃ must also be in p�1(0) = Z. We claim that the function � 7! w(�) = �̃(1) is inverse to �.
First we must show it is well-defined.

Lemma 1.4. Let h : � '
p

� be a path-homotopy between loops at ? in S1
. Then there is a unique

lift h̃ : I ⇥ I �! R such that h̃(0, 0) = 0.

Proof. We already know about the unique lift �̃ on I ⇥ 0. On 0 ⇥ I, the only possible lift is the
constant lift. Now use the Lebesgue number lemma again to subdivide the compact square I ⇥ I
so that every subsquare is mapped by � into one of the U

i

. Using the same argument as above, we
get a unique lift on each subsquare, starting from the bottom left square and moving along each
row systematically. ⌅

Note that the lift h̃ is a path-homotopy between the lifts �̃ and �̃. This is because h̃(0, t) and
h̃(1, t) are lifts of constant paths. By the uniqueness of lifts, according to Lemma 1.3, the lift of a
constant path must be a constant path. It follows that �̃(1) = �̃(1). This shows that the function
w : ⇡1(S1) �! Z is well-defined.

It remains to show that w is the inverse of �.
First note that �

n

(s) = ns is a path in R starting at 0, and p � �
n

(s) = e2⇡i(ns) = �
n

(s), so �
n

is
a lift of �

n

starting at 0. By uniqueness of lifts (Lemma 1.3), �
n

must be �̃
n

. Therefore

w � �(n) = w(�
n

) = �̃
n

(1) = �(1) = n.

It remains to check that
h
�(w(�))

i
= [�] for any loop �. Consider lifts ^�(w(�)) and �̃. These are

both paths in R starting at 0 and ending at �̃(1) = w(�) (this uses that w � �(n) = n). But any
two such paths are homotopic (use a straight-line homotopy)! Composing that homotopy with the
exponential map p will produce a path-homotopy �(w(�)) '

p

� as desired. ⌅
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