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Example 3.41. (Surface of genus g) Similarly, if we take a connect sum of g tori, we get the
surface of genus g, Mg. It has fundamental group

⇡1(Mg) ⇠= F (a1, b1, . . . , ag, bg)/[a1, b1] . . . [ag, bg].

We now have �(Mg) = 1� 2g + 1 = 2� 2g.

We are headed towards a “classification theorem” for compact surfaces, so let us now show that
if g1 6= g2 then Mg1 is not homeomorphic to Mg2 . We show this by showing they have di↵erent
fundamental groups. As we have said already, understanding a group given by a list of generators
and relations is not always easy, so we make life easier by considering the abelianizations of the
fundamental groups.

The abelianization Gab of G is the group defined by

Gab = G/[G, G],

where [G, G] is the (normal) subgroup generated by commutators.

Lemma 3.42. The abelianization F (a1, . . . , an)ab is the free abelian group Zn.

Proof. We already did this in the case n = 2 for understanding the fundamental group of the torus,
and the proof generalizes. ⌅

The abelianization is characterized by a universal property. For a group G, let q : G �! Gab be
the quotient map. Then the universal property of the quotient gives the following result.

Proposition 3.43. Let G be a group and A an abelian group. Then any homomorphism ' : G �!
A factors uniquely as G

q�! Gab
'�! A.

When we apply this to the surface Mg, we get

Proposition 3.44. ⇡1(Mg)ab
⇠= Z2g.

Proof. Let F = F (a1, b1, . . . , an, bn), let N E F be the normal subgroup generated by (i.e. the
normal closure of) the product [a1, b1] . . . [ag, bg], and let G = ⇡1(Mg) ⇠= F/N . Since the quotient
map q : F �! G is surjective, it follows that q([F, F ]) = [G, G]. By the Third Isomorphism
Theorem, we get

Gab := G/[G, G] = G/q([F, F ]) ⇠= F/[F, F ] ⇠= Z2g.

⌅
Lemma 3.45. If H ⇠= G then Hab

⇠= Gab.

As a result, we see that if g1 6= g2 then ⇡1(Mg1) 6= ⇡1(Mg2) because their abelianizations are not
isomorphic.

Corollary 3.46. If g1 6= g2 them Mg1 6⇠= Mg2.

Note that we have also distinguished all of these from S2 (which has trivial fundamental group)
and from RP2 (which has abelian fundamental group Z/2Z).

What about the Klein bottle K? We found before the break that ⇡1(K) ⇠= F (a, b)/aba�1b. If
we abelianize this fundamental group, we get

Proposition 3.47. The abelianized fundamental group of the Klein bottle is

⇡1(K)ab
⇠= (Z{a}⇥ Z{b})/(a + b � a + b) = Z{a}⇥ Z{b}/2b ⇠= Z⇥ Z/2Z.
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Proof. The idea is the same as in the previous examples. Under the quotient F (a, b) �! Z{a} ⇥
Z{b}, the element aba�1b is sent to a+b�a+b (this is simply changing from multiplicative notation
to additive notation. ⌅

This group is di↵erent from all of the others, so K is not homeomorphic to any of the above
surfaces. The last main example is

Example 3.48. (RP2#RP2# . . .#RP2) Suppose we take a connect sum of g copies of RP2. We
will call this surface Ng. Following the previous examples, we see that we get a fundamental group
of

⇡1(Ng) ⇠= F (a1, . . . , ag)/a21a
2
2 . . . a2g

and �(Ng) = 1� g + 1 = 2� g. The abelianization is then

⇡1(Ng)ab
⇠= Zg/(2, 2, . . . , 2).

Define a homomorphism ' : Zg/(2, . . . , 2) �! Z/2Z⇥ Zg�1 by

'(n1, . . . , ng) = (n1, n2 � n1, n3 � n1, . . . , ng � n1).

Then it is easily verified that ' is an isomorphism. In other words,

⇡1(Ng)ab
⇠= Z/2⇥ Zg�1.

Ok, so we have argued that the compact surfaces S2, Mg (g � 1), and Ng (g � 1) all have
di↵erent fundamental groups and thus are not homeomorphic. The remarkable fact is that these
are all of the compact (connected) surfaces.

Theorem 3.49. Every compact, connected surface is homeomorphic to some Mg, g � 0 or to some
Ng, g � 1.

Corollary 3.50. If �(M) = n is odd, then M ⇠= N2�n

All of these examples are formed by taking connected sums of T 2’s or RP2’s. What happens if
we mix them?

Lemma 3.51. T 2#RP2 ⇠= RP2#RP2#RP2.

In other words, one bad apple spoils the whole bunch. The proof is in the picture:
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In particular, this implies that Mg#Nk
⇠= N2g+k.

Proof of the theorem. Let M be a compact, connected surface. We assume without proof (see
Prop 6.14 from Lee) that

• M is a 2-cell complex with a single 2-cell.
• the attaching map ↵ : S1 �! M1 for the 2-cell has the following property: let U be the
interior of a 1-cell. Then the restriction ↵ : ↵�1(U) �! U is a double cover. In other words,
if we label @D2 according to the edge identifications as we have done in the examples, each
edge appears exactly twice. Note that this must happen since each interior point on the
edge needs to have a half-disk on two sides.

So we can visualize M as a quotient of a 2n-sided polygon.
As we said above, each edge appears exactly twice on the boundary of the two-cell. If the two

occurrences have opposite orientations (as in the sphere), we say the pair is an oriented pair. If
the two occurrences have the same orientation (as in RP2), we say this is a twisted pair. There
will be 4 reductions in the proof!!

(1) If M ⇠= S2, we are done, so suppose (for the rest of
the proof) this is not the case. Then we can reduce to
a cell structure with no adjacent oriented pairs. (Just
fold these together.)

(2) We can reduce to a cell structure where all twisted pairs are adjacent.

If this creates any adjacent oriented pairs, fold them in.
(3) We can reduce to a cell structure with a single 0-cell. Suppose a is an edge from x to y and

that x 6= y. Let b be the other edge connecting to y. By (1), b can’t be a�1. If b = a then
x = y. Suppose b 6= a, and write z for the other vertex on b. Then the edge b must occur
somewhere else on the boundary. We use the moves in the pictures below, depending on
whether the pair b is oriented or twisted.

������������������
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This converts a vertex y into a vertex x. Note that this procedure does not separate any
adjacent twisted pairs, since the adjacent twisted pair b gets replaced by d.

(4) Observe that any oriented pair a, a�1 is interlaced with another oriented pair b, b�1. If
not, we can write the boundary in the form aW1a

�1W2. Now, given our assumption and
previous steps, no edge in W1 gets identified with an edge in W2. It follows that if the
endpoints of a are x and y, then these two vertices never get identified with each other, as
the vertex x cannot appear in W1 and similarly y cannot appear in W2.

(5) We can further arrange it so that there is no interference: the oriented pairs of edges occur
as aba�1b�1 with no other edges in between. The proof is in the picture below, taken from
p. 177 of Lee.

Now we are done by Lemma 3.51. M is homeomorphic either to a connect sum of projective planes
or to a connect sum of tori. ⌅

Fri, Mar. 23

We saw in Corollary 3.50 that if �(M) is odd, we can immediately identify the homeomorphism
type of M . If �(M) is even, this is not the case, as T 2 and K both have Euler characteristic equal
to 0. To handle the even case, we make a definition.

Say that a surface M is orientable if it has a cell structure as above with no twisted pairs of
edges.

Proposition 3.52. A surface is orientable if and only if it is homeomorphic to some Mg.

Proof. (() Our standard cell structures for these surfaces have no twisted pairs of edges. ())
Apply the algorithm described in the above proof, starting with only oriented pairs of edges. Step
1 does not introduce any new edges. Step 2 can be skipped. Steps 3 cuts-and-pastes along a pair
of oriented edges and so does not change the orientation of any edges. Step 4 does not change
the surface. Step 5 again only cuts-and-pastes along oriented edges. It follows that in reducing to
standard form, we do not introduce any twisted pairs of edges. ⌅

In fact, you should be able to convince yourself that a surface is orientable if and only if every
cell structure as above has no twisted pairs. The point is that if you start with a cell structure
involving some twisted pairs and you perform the reductions described in the proof, you will never
get rid of any twisted pairs of edges.

The fact that the Mg can be embedded in R3 whereas the Ng cannot is precisely related to
orientability. In general, you can embed a (smooth) n-dimensional manifold in R2n, but you can
improve this to R2n�1 if the manifold is orientable. The definition we have given here depends
on particular kinds of CW structures, but other definitions of orientability (in terms of homology)
apply more widely.

In addition to the Ng’s, the Möbius band is a 2-manifold that is famously non-orientable.
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4. Higher homotopy groups

We have just been studying surfaces and have determined (well, at least given presentations for)
their fundamental groups. We have also seen (on exam 1) that there are higher homotopy groups
⇡n(X), so we might ask about the groups ⇡n(Mg) and ⇡n(Nk).

Recall, again from the exam, that any covering E �! B induces an isomorphism on all higher
homotopy groups. So it su�ces to understand the universal covers of these surfaces.

The first example would be M0 = S2, which is simply-connected. Note that this space is also the
universal cover of N1 = RP2, so these will have the same higher homotopy groups. We will come
back to these on Monday.

Another example is the componentwise-exponential covering q⇥q : R2 �! T 2, which shows that
T 2 has no higher homotopy groups. Note that we also could have deduced this using that

⇡n(X ⇥ Y ) ⇠= ⇡n(X)⇥ ⇡n(Y )

and that S1 has no higher homotopy groups (also from Exam 1).

What about the Klein bottle K? Well, consider the relation on T 2 given by (x, y) ⇠ (x+ 1
2 , 1�y).

The quotient T 2/ ⇠ is K, and the quotient map T 2 �! K is a double cover. It follows that the
universal cover of T 2, which is R2, is also the universal cover of K. So K also has no higher
homotopy groups!

For the surfaces of higher genus, we start by generalizing the double cover T 2 �! K.

Proposition 4.1. If g � 1, then there is a double cover of Ng by Mg�1.

Lemma 4.2. Suppose that p : E �! B is a double cover of a surface B, and let W be another
surface. Then there is a double cover E#W#W �! B#W .

The lemma implies the proposition as follows:

Proof. We already know about the double cover S2 �! RP2, which is the case g = 1. Recall
(Lemma 3.51) that N3

⇠= RP2#T 2. By the lemma, we get a double cover M2
⇠= S2#T 2#T 2 �!

RP2#T 2 ⇠= N3. By tacking on more copies of T 2, this handles the case of g odd.
We also discussed above the double cover T 2 �! K, which is the case g = 2. By the lemma,

we get a double cover M3
⇠= T 2#T 2#T 2 �! K#T 2 ⇠= N4. By tacking on more copies of T 2, this

handles the case of g even. ⌅
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