
Mon, Mar. 26

Last time, we saw that there is a double covering of the nonorientable surface Ng by the orientable
surface Mg�1. It remains to find the universal cover of Mg�1.

Proposition 4.3. For g � 1, the universal cover of Mg is R2.

Sketch. We have already shown this for g = 1. In the higher genus case, this is more di�cult.
This is sometimes described using “hyperbolic” geometry. In that approach, R2 is replaced by the
(homeomorphic) upper half-place, equipped with the hyperbolic metric. The idea is that you can
tile the hyperbolic half-plane by polygons. Since Mg has a presentation as an (oriented) quotient
of a polygon, this establishes a covering of Mg by the half-plane. ⌅

Ok, so we know that ⇡n(RP2) ⇠= ⇡n(S2). What are these groups? We will show later that
⇡2(S2) ⇠= Z. Just like for S1, a generator for this group is the identity map S2 �! S2. But the
fascinating thing is that, in contrast to S1, there are plenty of interesting higher homotopy groups!
Here is a table of homotopy groups of spheres, taken from Wikipedia.

There are several things to note in this table.

(1) We have ⇡n(S3) = ⇡n(S2) for n � 3. There is a map S3 �! S2 that induces this isomor-
phism on homotopy groups. It is the Hopf map ⌘ we studied before (C2 � {0} �! CP1).
This map is not a cover, since the fibers are circles. But this is a higher analogue of a cov-
ering: it is an S1-bundle. The analogue of the “evenly covered neighborhoos” here is called
“local triviality” of the bundle. This means that each point in x 2 CP1 has a neighborhood
U such that ⌘�1(U) ⇠= S1⇥U . Remembering that a point in CP1 is of the form x = [z1 : z2],
consider the open sets U1 = {[z1 : z2]|z1 6= 0} and U2 = {[z1 : z2]|z2 6= 0}. These certainly
cover CP1, and the isomorphism

⌘�1(U1) ⇠= S1 ⇥ U1

is

(z1, z2) 7!
✓

z1
kz1k

, [z1 : z2]

◆
.
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A bundle still has a lifting property for paths and homotopies, but the lifts are no longer
unique. This means that we can’t necessarily lift an arbitrary map Y �! S2 up to a map
Y �! S3, and it need not be true that all higher homotopy groups of S2 are identified with
those of S3. It turns out that what happens here is that we have a “long exact sequence”
relating the homotopy groups of S3, S2, and S1 (most of which are trivial).

(2) We have ⇡n(Sk) = 0 if n < k. The argument is similar to the one that showed the higher
spheres are all simply-connected. The main step is to show that any map Sn �! Sk is
homotopic to a nonsurjective map if n < k.

(3) The answers are eventually constant on each diagonal. There is a suspension homomorphism
⇡n(Sk) �! ⇡n+1(Sk+1) that induces these isomorphisms. The stable answer for ⇡k+n(Sk)
is known as the nth stable homotopy group of spheres and is written ⇡s

n. We have

⇡s
0 = Z, ⇡s

1 = Z/2, ⇡s
2 = Z/2, ⇡s

3 = Z/24.

These groups are known out to around n = 60.
(4) Most of the unstable groups are finite. The only infinite ones are ⇡n(Sn) = Z and

⇡4k�1(S2k). The latter are all Z⇥(finite group). This is a theorem of J. P. Serre. This
implies that all of the stable groups are finite, except ⇡s

0 = Z.
Ok, so homotopy groups are hard! But there are a few more examples of spaces whose homotopy

groups are all known, so let’s mention those before we abandon all hope and despair.

Example 4.4. Remember that we have a double cover Sn �! RPn inducing an isomorphism on
all higher homotopy groups. But Sn does not have any homotopy groups until ⇡n, so this means
that ⇡k(RPn) = 0 if 1 < k < n. The inclusion Sn ,! Sn+1, (x0, . . . , xn) 7! (x0, . . . , xn, 0) induces
an inclusion RPn ,! RPn+1. As n gets higher, we lose more and more homotopy groups. In the
limit, S1 =

S
n Sn has no homotopy groups (and in fact it is contractible). Similarly, RP1 has

only a fundamental group of Z/2 but no higher homotopy groups.

Example 4.5. There is an analogous story for CPn. Here, we have for every n, an S1-bundle
S2n�1 ' Cn � {0} �! CPn. This map induces an isomorphism on ⇡k for k � 3 and gives
⇡2(CPn) ⇠= ⇡1(S1) ⇠= Z. So the only nontrivial homotopy group of CP1 is ⇡2(CP1) ⇠= Z.

Wed, Mar. 28
Last time, we discussed higher homotopy groups of some familiar spaces. We saw that most

of the Mg and Ng have no higher homotopy groups. On the other hand, basic spaces like S2

and RP2 have very complicated (and unknown) higher homotopy groups. The other examples in
which we had complete understanding of the higher homotopy groups were the infinite-dimensional
complexes RP1 and CP1. It turns out that this is quite typical: a finite cell complex almost always
has infinitely many nontrivial homotopy groups!

5. Homology

This is rather disheartening. We think of a cell complex as an essentially finite amount of
information. It would be nice if we only got finitely many algebraic objects out of it. There is
such a construction: homology. As we will see, this will combine a number of the ideas we have
recently encountered: the fundamental group and Euler characteristics. A good way to think about
homology is that it is a more sophisticated version of the Euler characteristic.

We will deal with two versions of homology. The first, singular homology, is a good theoretical
tool that is convenient for proving theorems. But it is not great for doing actual calculations.
For that purpose, we will also consider cellular homology, which is defined for CW complexes.
Simplicial homology is yet another version which is convenient for calculation, though we will
not consider this version in our course.

37



5.1. Singular homology. Let �n denote the standard n-simplex, which can be defined as

�n = {(t0, . . . , tn) 2 Rn+1 |
X

i

ti = 1, ti � 0}.

We will denote by vi 2 �n the vertex defined by ti = 1 and tj = 0 if j 6= i. Note that each “facet”
of the simplex, in which we have restricted one of the coordinates to zero, is an (n�1)-dimensional
simplex. More generally, if we set k of the coordinates equal to zero, we get a face which is an
(n � k)-dimensional simplex.

Definition 5.1. Let X be a space. A singular n-simplex of X will simply be a continuous map
�n �! X.

Let CSing
n (X), or simply Cn(X), be the free abelian group on the set of singular n-simplices of

X. An element of Cn(X) is referred to as a (singular) n-chain on X. Our goal is to assemble the
Cn(X), as n varies, into a “chain complex”

. . . �! C3(X) �! C2(X) �! C1(X) �! C0(X).

To say that this is a chain complex just means that composing two successive maps in the sequence
gives 0.

Fri, Mar. 30

Exam day
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