
Mon, Apr. 2

We wish to specify a homomorphism

@n : Cn(X) �! Cn�1(X).

Since Cn(X) is a free abelian group, the homomorphism @n is completely specified by its value on
each generator, namely each n-simplex.

There are n + 1 standard inclusions di : �n�1 ,! �n, given by inserting 0 in position i in �n.

Definition 5.2. The singular boundary homomorphism

@n : Cn(X) �! Cn�1(X)

is defined by

@n(�) =
nX

i=0

(�1)i[� � di].

Example 5.3.

(1) If � is a 1-simplex (from v0 to v1), then

@1(�) = [� � d0]� [� � d1] = [v1]� [v0].

(2) If � is a 2-simplex with vertices v0, v1, and v2, and edges e01, e02, and e12, then

@2(�) = [� � d0]� [� � d1] + [� � d2] = [e12]� [e02] + [e01]

The claim is that this defines a chain complex. The signs have been inserted into the definition
to make this work out.

Proposition 5.4. The boundary squares to zero, in the sense that @n�1 � @n = 0.

Proof. We will use

Lemma 5.5. For i > j, the composite

�n�2 dj�! �n�1 di�! �n is equal to the composite �n�2 di�1

���! �n�1 dj�! �n.

Consider the case i = 3, j = 1, n = 4. We have

d3(d1(t1, t2, t3)) = d3(t1, 0, t2, t3) = (t1, 0, t2, 0, t3) = d1(t1, t2, 0, t3) = d1(d2(t1, t2, t3)).

This argument generalizes.
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For the proposition,

@n�1

⇣
@n(�)

⌘
= @n�1

 
nX

i=0

(�1)i[� � di]

!

=
nX

i=0

(�1)i @n�1([� � di])

=
nX

i=0

(�1)i
n�1X

j=0

(�1)j [� � di � dj ]

=
nX

i=0

X

j<i

(�1)i(�1)j [� � di � dj ] +
nX

i=0

X

j�i

(�1)i(�1)j [� � di � dj ]

(changing bounds) =
nX

i=1

X

j<i

(�1)i(�1)j [� � di � dj ] +
n�1X

i=0

X

j�i

(�1)i(�1)j [� � di � dj ]

(Lemma) =
nX

i=1

X

j<i

(�1)i(�1)j [� � dj � di�1] +
n�1X

i=0

X

j�i

(�1)i(�1)j [� � di � dj ]

= �
n�1X

j=0

X

i�1�j

(�1)j(�1)i�1[� � di � dj ] +
n�1X

i=0

X

j�i

(�1)i(�1)j [� � di � dj ]

= 0.

⌅
We have shown that any two successive simplicial boundary homomorphisms compose to zero,

so that we have a chain complex. What do we do with a chain complex? Take homology!

Definition 5.6. If

. . . �! Cn+1
@n+1���! Cn

@n�! . . .

is a chain complex, then we define the nth homology group Hn(C⇤, @⇤) to be

Hn(C⇤, @⇤) := ker @n/ im @n+1.

Note that the fact that @n � @n+1 = 0 implies that im @n+1 is a subgroup of ker @n, so that
the definition makes sense. A complex (C⇤, @⇤) is said to be exact at Cn if we have equality
ker @n = im @n+1. Thus the homology group Hn(C⇤, @⇤) “measures the failure of C⇤ to be exact at
Cn.”

Definition 5.7. Given a space X, we define the singular homology groups of X to be

Hn(X;Z) := Hn(C⇤(X), @⇤).

Note that we only defined the groups Cn(X) for n � 0. For some purposes, it is convenient to
allow chain groups Cn for negative values of n, so we declare that Cn(X) = 0 for n < 0. This
means that ker @0 = C0(X), so that H0 = C0(X)/ im @1 = coker(@1).

Terminology: The group ker @n is also known as the group of n-cycles and sometimes written
Zn. The group im(@n+1) is also known as the group of boundaries and sometimes written Bn.

Wed, Apr. 4

Remark 5.8. It is worth noting that since each Cn(X) is free abelian and ker @n and im @n+1 are
both subgroups, they are necessarily also free abelian.
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Example 5.9. Consider X = ⇤. Then Cn({⇤}) = Z{Top(�n, {⇤})} ⇠= Z for all n. The di↵erential
@n : Cn({⇤}) �! Cn�1({⇤}) takes the (constant) singular n-simplex cn to the alternating sum

X

i

(�1)icn�1 =

⇢
cn�1 n even
0 n odd

.

In other words, the chain complex is

. . .
1�! Z 0�! Z 1�! Z 0�! Z,

so that the only nonzero homology group is H0(⇤) ⇠= Z.

But already for X = �1, the chain groups are infinite rank, and computing becomes impractical.
On the other hand, the singular homology groups have good properties. For starters, we will discuss
functoriality.

Given a map f : X �! Y , we can compose any singular n-simplex of X with f to get a singular
n-simplex of Y . This produces a function

fn : Singn(X) �! Singn(Y )

and therefore a homomorphism

fn : Cn(X) �! Cn(Y ).

It remains to discuss how this interacts with homology.

Definition 5.10. Let (C⇤, @
C
⇤ ) and (D⇤, @

D
⇤ ) be chain complexes. Then a chain map f⇤ :

(C⇤, @
C
⇤ ) �! (D⇤, @

D
⇤ ) is a sequence of homomorphisms fn : Cn �! Dn, for each n, such that

each diagram

Cn
fn //

@C
n

✏✏

Dn

@D
n

✏✏
Cn�1

fn�1

// Dn�1

commutes for each n.

Since fn is given by post-composition with f , whereas each term of @n is given by precomposing
with the face inclusions, it follows that the homomorphisms (f⇤) on the singular chains assemble
to produce a chain map.

We set up this definition in order to get

Proposition 5.11. A chain map f⇤ : (C⇤, @
C
⇤ ) �! (D⇤, @

D
⇤ ) induces homomorphisms fn :

Hn(C⇤, @
C
⇤ ) �! Hn(D⇤, @

D
⇤ ) for each n.

Proof. Let x 2 Cn be a cycle, meaning that @C(x) = 0. Then @D(fn(x)) = fn�1(@C(x)) =
fn�1(0) = 0, so that fn(x) is a cycle in Dn. In order to get a well-defined map on homology,
we need to show that if x is in the image of @C

n+1, then fn(x) is in the image of @D
n+1. But if

x = @C
n+1(y), then fn(x) = fn(@C

n+1(y)) = @D
n+1fn+1(y), which shows that fn(x) is a boundary. ⌅

There is an obvious way to compose chain maps, so that chain complexes and chain maps form
a category Ch�0(Z).

Proposition 5.12. The assignment X 7! (C⇤(X), @⇤) and f 7! f⇤ defines a functor

C⇤ : Top �! Ch�0(Z).
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Given the above discussion, it only remains to show that this construction takes identity mor-
phisms to identity morphisms and that it preserves composition. We leave this as an exercise.

Note that the sequence of homology groups Hn(C⇤, @
C
⇤ ) of a chain complex is not quite a chain

complex, since there are no di↵erentials between the homology groups. You can think of this as
a degenerate case of a chain complex, in which all di↵erentials are zero. But it is more common
to simply call this a graded abelian group. If X⇤ and Y⇤ are graded abelian groups, then a
graded map f⇤ : X⇤ �! Y⇤ is simply a collection of homomorphisms fn : Xn �! Yn. Graded maps
compose in the obvious way, so that we get a category GrAb of graded abelian groups. Then
Proposition 5.11 is the main step in proving

Proposition 5.13. Homology defines a functor

H⇤ : Ch�0(Z) �! GrAb.

The composition of two functors is always a functor. Thus Proposition 5.12 and Proposition 5.13
combine to yield

Proposition 5.14. Singular homology defines a functor

HSing
⇤ : Top �! GrAb.

This implies, for instance, that homeomorphic spaces have isomorphic singular homology groups.

Fri, Apr. 6

Last time, we discussed how a map of spaces induces a map on homology. Previously, we saw
that the induced map on fundamental groups only depended on the homotopy class of the map,
and we might ask the same question here.

Proposition 5.15. Suppose that f ' g as maps X �! Y . Then f and g induce the same map on
homology.

Corollary 5.16. If f : X �! Y is a homotopy equivalence, then f induces an isomorphism on
homology.

Sketch of Proposition 5.15. See Theorem 13.8 of Lee for complete details.
If we have maps f, g : X �! Y , it would be enough to show that their di↵erence f⇤ � g⇤ at the

level of chains always takes values in the group of boundaries. Unfortunately, this is not always
true, but it turns out to be true on cycles, which is enough to deduce the proposition. For simplicity,
we consider the “universal” case, in which Y = X ⇥ I and f and g are the inclusions at time 0 and
1, respectively.

The idea is to define a homomorphism (called a “chain-homotopy”) hn : Cn(X) �! Cn+1(X⇥I)
for all n, satisfying the equation

h � @ + @ � h = g⇤ � f⇤.

If you plug in a cycle x to this formula, you learn that g⇤(x)� f⇤(x) is a boundary, so that f⇤ and
g⇤ agree at the level of homology.

When n = 0, we simply take h0(x) to be the constand path in X ⇥ I from (x, 0) to (x, 1). At
level 1, if � is a path in X, we wish to define h1(�) 2 C2(X ⇥ I) with

h0(�(1)� �(0)) + @ � h1(�) = � ⇥ {1}� � ⇥ {0}.

We take h1(�) to be the formal di↵erence of simplices with vertices (�0, 0), (�1, 0), and (�1, 1) and
(�0, 0), (�0, 1), (�1, 1). Similar formulas work in higher dimensions. ⌅
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Example 5.17. We saw that the one-point space has homology groups nonvanishing only in
dimension zero, given by the group Z. It follows that the same is true for any contractible space,
such as In or Dn or Rn.
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