
Mon, Apr. 9

5.2. The functor H0(�).

Proposition 5.18. If X is path-connected and nonempty, then H0(X) ⇠= Z.

Proof. Define " : C0(X) �! Z by sending each 0-simplex (i.e. point of X) to 1. As X is nonempty,
the map " is surjective. We claim that ker(") = B0 = im(@1).

For any 1-simplex �, @1(�) = �(1)� �(0), so "(@1(�)) = "(�(1)� �(0)) = 1� 1 = 0. This shows
that B0 ✓ ker(").

Now suppose that c =
Pk

i=1 nixi is a 0-chain. Pick a point x0 2 X, and, for each i = 1, . . . , k,
pick a path ↵i : x0  xi. Then @1(↵i) = xi � x0, so that xi ⌘ x0 in C0(X)/B0(X). Therefore
c ⌘ (

P
i ni)x0 in C0(X)/B0. Now if c 2 ker("), this means that

P
i ni = 0, so that c ⌘ 0 in

C0(X)/B0. In other words, c 2 B0. ⌅

To describe H0 for a general space, we first discuss how path components interact with homology.

Proposition 5.19. Let {X↵} be the set of path-components of X and ◆↵ : X↵ �! X the inclusions.
These induce an isomorphism M

↵

H⇤(X↵) ⇠= H⇤(X).

Proof. Since the image of any singular n-simplex must be contained in a single path-component,
we get already a splitting of the chain complexes

M

↵

C⇤(X↵) ⇠= C⇤(X).

This produces the splitting on the level of homology. ⌅

Corollary 5.20. For any space X, H0(X) is free abelian on the set of path-components of X. In
other words,

H0(X) ⇠= Z{⇡0(X)}.

5.3. The Mayer-Vietoris Sequence. One of the fundamental tools for computing homology is
the Mayer-Vietoris sequence, which is analogous to the van Kampen theorem for the fundamental
group. First, some terminology.

Recall (from just before Definition 5.7) that we say that a sequence A
f�! B

g�! C is exact if
it has no homology, meaning that im(f) = ker(g). Very often, we encounter an exact sequence
in which either A or C is 0. If A = 0, then the image of f must also be zero, so that g must be
injective. Similarly, if C = 0, then the kernel of g must be all of B, so that f must be surjective.
For a longer sequence, such as A �! B �! C �! D �! E �! . . . , we say it is exact if it is so at
each group in the sequence.

We consider a space X with open subsets U and V . We will denote the inclusions as in the
diagram

U
k

!!
U \ V

i
;;

j ##

X

V
`

==
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Theorem 5.21 (Mayer-Vietoris long exact sequence). Let X be a space, and let U and V be open
subsets with U [ V = X. Then there is a long exact sequence in homology

. . .
@n+1���! Hn(U \ V )

i⇤�j⇤���! Hn(U)�Hn(V )
k⇤�`⇤����! Hn(X)

@n�! Hn�1(U \ V )
i⇤�j⇤���! . . .

Before proving the theorem, we give a sample application.

Example 5.22. (H⇤(Sk)) Combining Example 5.9 with Proposition 5.19 gives that

Hi(S
0) ⇠=

(
Z2 i = 0

0 else.
.

Wed, Apr. 11

We use the Mayer-Vietoris sequence to compute the homology of the higher spheres. We argue
by induction that for k > 0,

Hi(S
k) ⇠=

(
Z i = 0, k

0 else.
.

The base case is S1. Take U and V to be the open subsets of S1 given by removing the north and
south poles, respectively. Notice that U and V are both contractible and that U \ V deformation
retracts to the equatorial S0. Thus the Mayer-Vietoris sequence becomes

. . .
@n+1���! Hn(S

0)
i⇤�j⇤���! Hn(⇤)�Hn(⇤)

k⇤�`⇤����! Hn(S
1)

@n�! Hn�1(S
0)

i⇤�j⇤���! . . . .

Note that when n is larger than 1, then Hn(S1) is flanked by two zero groups and must therefore
by zero. We are left then only with the exact sequence

0 �! H1(S
1)

@1�! H0(S
0)

i⇤�j⇤���! H0(⇤)�H0(⇤)
k⇤�`⇤����! H0(S

1) ⇠= Z �! 0.

This becomes

0 �! H1(S
1)

@1�! Z2

✓
1 1
1 1

◆

�����! Z2 (1 �1)����! Z �! 0.

It follows that the image of @1 is the subgroup generated by (1,�1), so that H1(S1) ⇠= Z.
Now for the induction step, suppose the formula holds for H⇤(Sk) and consider Sk+1. We again

take U and V to be the complements of the poles in Sk+1. Now the Mayer-Vietoris sequence
becomes

. . .
@n+1���! Hn(S

k)
i⇤�j⇤���! Hn(⇤)�Hn(⇤)

k⇤�`⇤����! Hn(S
k+1)

@n�! Hn�1(S
k)

i⇤�j⇤���! . . . .

We know by Proposition 5.18 that H0(Sk+1) ⇠= Z, and the exact sequence gives that

Hn+1(Sk+1)
@n+1���! Hn(Sk) is an isomorphism for n � 1. Finally, the group H1(Sk+1) is in the

exact sequence

0 �! H1(S
k+1)

@1�! H0(S
k)

i⇤�j⇤���! H0(⇤)�H0(⇤) �! H0.

The map i⇤ � j⇤ is the diagonal map Z �! Z2, which is injective. It follows that H1(Sk+1) = 0.

Fri, Apr. 13

The main step in the proof of the Mayer-Vietoris theorem is the following result. We say that

a sequence 0 �! A⇤
i�! B⇤

q�! C⇤ �! 0 of chain complexes is exact if each sequence 0 �! An
i�!

Bn
q�! Cn �! 0 is exact.
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Proposition 5.23. A short exact sequence 0 �! A⇤
i�! B⇤

q�! C⇤ �! 0 of chain complexes induces
a long exact sequence in homology

. . . �! Hn+1(C)
��! Hn(A)

i⇤�! Hn(B)
q⇤�! Hn(C)

��! Hn�1(A) �! . . .

Proof. We start with the construction of the “connecting homomorphism �”. Thus let c 2 Cn be a
cycle. Choose a lift b 2 Bn, meaning that q(b) = c. We then have q(@n(b)) = @n(q(b)) = @n(c) = 0.
Since the rows are exact, we have @n(b) = i(a) for some unique a 2 An�1, and we define

�(c) := a.

b � //
_

✏✏

c_

✏✏
a � // @(b) � // 0

It remains to see how a depends on the choice of b. Thus let d 2 ker(q), so that q(b + d) = c. By
exactness, we have d = i(e) for some e 2 An. Then

i(a + @n(e)) = @n(b) + i(@n(e)) = @n(b) + @n(i(e)) = @n(b) + @n(d) = @n(b + d),

so that �(c) = a + @n(e) ⇠ a. In other words, a specifies a well-defined homology class.
Since we want � to be well-defined not only on cycles but also on homology, we need to show

that if c is a boundary, then �(c) ⇠ 0. Thus suppose c = @(c0). We can then choose b0 such that
q(b0) = c0. It follows that @(b0) would be a suitable choice for b. But then @(b) = @(@(b0)) = 0, so
that �(c) = 0.

Exactness at B: First, we see that q⇤ � i⇤ = 0 since this is already true at the chain level. Now
suppose that b 2 ker(q⇤). This means that q(b) = @(c) for some c 2 Cn+1. Now choose a lift
d 2 Bn+1 of c. Then we know

q(@(d)) = @(q(d)) = @(c) = q(b).

In other words, q(b�@(d)) = 0, so that we must have b�@(d) = i(a) for some a. Since b ⇠ b�@(d),
we are done.

Exactness at C: We first show that � � q⇤ = 0. Thus let b 2 Bn be a cycle. We wish to show that
�(q⇤(b)) = 0. But the first step in constructing �(q(b)) is to choose a lift for q(b), which we can of
course take to be b. Then @(b) = 0, so that a = 0 as well.

Now suppose that c 2 Cn is a cycle that lives in the kernel of �. This means that a = @(e) for
some e. But then b � i(e) is a cycle, and q(b � i(e)) = c, so c is in the image of q⇤.

Exactness at A: First, we show that i⇤ � � = 0. Let c 2 Cn be a cycle. Then if �(c) = a, then by
construction, we have i(a) = @(b) ⇠ 0, so that i⇤ � � = 0.

Finally, suppose that a 2 An is a cycle that lives in ker i⇤. Then i(a) = @(b) for some b, but then
a = �(q(b)). ⌅
Sketch of Theorem 5.21. We would like to apply Proposition 5.23 to the sequence

0 �! C⇤(U \ V )
i⇤+j⇤���! C⇤(U)� C⇤(V )

k⇤�`⇤����! C⇤(X) �! 0.

The problem is that this is not exact at C⇤(X). The reason is that not every singular n-simplex in
X is contained entirely in U or V . Instead, we introduce the subcomplex CU,V

⇤ (X), where CU,V
n (X)

is the free abelian group on simplices which are entirely contained in either U or V .
We claim that the inclusion CU,V

⇤ (X) ,! C⇤(X) is a chain homotopy equivalence. We need to
define a homotopy inverse f : C⇤(X) �! CU,V

⇤ (X). The idea is to use “barycentric subdivision”.
The subdivision of an n-simplex expresses it as the union of smaller n-simplices. By the Lebesgue
Number Lemma, repeated barycentric subdivision will eventually decompose any singular n-simplex
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of X into a collection of n-simplices, each of which is either contained in A or in B. This subdivision
allows you to define a chain map f . You then show that subdivision of simplices is chain-homotopic
to the identity. See Proposition 2.21 of Hatcher for a much more detailed discussion. ⌅
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