Mon, Apr. 9 ‘

5.2. The functor Hy(—).
Proposition 5.18. If X is path-connected and nonempty, then Ho(X) = Z.

Proof. Define ¢ : Cy(X) — Z by sending each 0-simplex (i.e. point of X) to 1. As X is nonempty,
the map ¢ is surjective. We claim that ker(¢) = By = im(0).

For any 1-simplex o, 0i(0) = o(1) — (0), so £(01(0)) =€(o(1) —o(0)) =1 —1 = 0. This shows
that By C ker(e).

Now suppose that ¢ = Zle n;x; is a 0-chain. Pick a point zg € X, and, for each i = 1,... k,
pick a path «; : g ~» x;. Then 01(cy;) = x; — g, so that z; = x¢ in Cy(X)/Bo(X). Therefore
c = (3, ni)xo in Co(X)/By. Now if ¢ € ker(e), this means that ) ., n; = 0, so that ¢ = 0 in
Co(X)/By. In other words, ¢ € By. [

To describe Hy for a general space, we first discuss how path components interact with homology.

Proposition 5.19. Let {X,} be the set of path-components of X and 1o : Xo —> X the inclusions.
These induce an isomorphism

P H.(Xa) = H(X).

Proof. Since the image of any singular n-simplex must be contained in a single path-component,
we get already a splitting of the chain complexes

P C.(Xa) = C.(X).

This produces the splitting on the level of homology. |

Corollary 5.20. For any space X, Ho(X) is free abelian on the set of path-components of X. In
other words,

Ho(X) = Z{m(X)}.

5.3. The Mayer-Vietoris Sequence. One of the fundamental tools for computing homology is
the Mayer-Vietoris sequence, which is analogous to the van Kampen theorem for the fundamental
group. First, some terminology.

Recall (from just before Definition 5.7) that we say that a sequence A 1y B % € is exact if
it has no homology, meaning that im(f) = ker(g). Very often, we encounter an exact sequence
in which either A or C is 0. If A = 0, then the image of f must also be zero, so that ¢ must be
injective. Similarly, if C' = 0, then the kernel of g must be all of B, so that f must be surjective.
For a longer sequence, suchas A — B — C — D — FE —» ..., we say it is exact if it is so at
each group in the sequence.

We consider a space X with open subsets U and V. We will denote the inclusions as in the

diagram
U
N

unv X

S A



Theorem 5.21 (Mayer-Vietoris long exact sequence). Let X be a space, and let U and V' be open
subsets with U UV = X. Then there is a long exact sequence in homology

S HLU A V) S L (U) @ Ha(V) B H (X)) 2 H (U V) 2

Before proving the theorem, we give a sample application.
Example 5.22. (H,(S*)) Combining Example 5.9 with Proposition 5.19 gives that
7> i=0
H;(8%) = { Z

0 else.

Wed, Apr. 11

We use the Mayer-Vietoris sequence to compute the homology of the higher spheres. We argue
by induction that for k > 0,
Z =0,k
H, (5%) = { o

0 else.

The base case is S'. Take U and V to be the open subsets of S! given by removing the north and
south poles, respectively. Notice that U and V are both contractible and that U NV deformation
retracts to the equatorial SY. Thus the Mayer-Vietoris sequence becomes

a’n b5 DJ * Lok n 5 DJ
2 HL(S0) 22 H, (+) @ Ha () 275 1,(8Y) 2 Ho(S0) 22 L
Note that when 7 is larger than 1, then H"(S') is flanked by two zero groups and must therefore
by zero. We are left then only with the exact sequence

0 — Hy(SY) 25 Ho(8%) =22 Ho(x) @ Ho(x) 25 Ho(SY) 2 Z — 0.

G )
1 1
0 — Hy(SY) & 72 72 7 — 0.
It follows that the image of 9; is the subgroup generated by (1,—1), so that H;(S!) = Z.
Now for the induction step, suppose the formula holds for H,(S*) and consider S¥+!. We again

take U and V to be the complements of the poles in S**1. Now the Mayer-Vietoris sequence
becomes

This becomes

(1-1),

877, bk - * % n - )
2L L (SR S H () @ Ho (%) Bl 1, (S8 O 1, (SF) B8 L

We know by Proposition 5.18 that Ho(Sk“) >~ 7, and the exact sequence gives that

87], . . . . . .
H,1(SFt1) =5 H,(S*) is an isomorphism for n > 1. Finally, the group H;(S**1) is in the
exact sequence

0 — H (SFHY) 25 Ho (%) =225 Ho(x) @ Ho(x) — Ho.

The map i, @ jx is the diagonal map Z — Z2, which is injective. It follows that Hl(SkH) =0.

Fri, Apr. 13

The main step in the proof of the Mayer-Vietoris theorem is the following result. We say that
a sequence 0 —» A, — B, 4y ¢, — 0 of chain complexes is exact if each sequence 0 — A, —

B, KN C,, — 0 is exact.
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Proposition 5.23. A short exact sequence 0 — A, i> B, 4, Cy — 0 of chain complezxes induces
a long exact sequence in homology

o Hp1 (C) S Ho(A) 25 H,(B) 25 Hay(C) S Hy 1 (A) — ...

Proof. We start with the construction of the “connecting homomorphism §”. Thus let ¢ € C,, be a
cycle. Choose a lift b € B,,, meaning that ¢(b) = c. We then have ¢(0,,(b)) = 9,,(q(b)) = 9, (c) = 0.
Since the rows are exact, we have 9, (b) = i(a) for some unique a € A,_1, and we define

o(c) :=

br—

I |
at 0(b) 0

It remains to see how a depends on the choice of b. Thus let d € ker(q), so that ¢(b+ d) = ¢. By
exactness, we have d = i(e) for some e € A,,. Then

(@ + 0(€)) = () + (0 (€)) = u(b) + Au(i(€)) = Du(b) + Au(d) = Bu(b + d),

so that 6(c) = a+ 0,(e) ~ a. In other words, a specifies a well-defined homology class.

Since we want d to be well-defined not only on cycles but also on homology, we need to show
that if ¢ is a boundary, then d(c) ~ 0. Thus suppose ¢ = 9(¢/). We can then choose o' such that
q(t/) = . Tt follows that 9(b') would be a suitable choice for b. But then d(b) = 9(d(b')) = 0, so
that 6(c) =0

Ezactness at B: First, we see that ¢, o7, = 0 since this is already true at the chain level. Now
suppose that b € ker(g.). This means that ¢(b) = 9(c) for some ¢ € Cp41. Now choose a lift
d € Bp41 of c. Then we know

q(9(d)) = 9(q(d)) = (c) = q(b).
In other words, ¢(b—9(d)) = 0, so that we must have b—9(d) = i(a) for some a. Since b ~ b—09(d),
we are done.

Ezactness at C': We first show that d og, = 0. Thus let b € B,, be a cycle. We wish to show that
d(g«(b)) = 0. But the first step in constructing 6(¢g(b)) is to choose a lift for ¢(b), which we can of
course take to be b. Then 9(b) = 0, so that a = 0 as well.

Now suppose that ¢ € C,, is a cycle that lives in the kernel of §. This means that a = d(e) for
some e. But then b —i(e) is a cycle, and q(b —i(e)) = ¢, so ¢ is in the image of g..

FEzactness at A: First, we show that i, 00 = 0. Let ¢ € C, be a cycle. Then if (c) = a, then by
construction, we have i(a) = 9(b) ~ 0, so that i, 0 = 0.

Finally, suppose that a € A,, is a cycle that lives in keri,. Then i(a) = 9(b) for some b, but then
a = d(a(b)). .

Sketch of Theorem 5.21. We would like to apply Proposition 5.23 to the sequence
0— CLUNV) ZS o,U) @ (V) 225 o (X) — 0.

The problem is that this is not exact at Ci(X). The reason is that not every singular n-simplex in
X is contained entirely in U or V. Instead, we introduce the subcomplex CY (X), where C5"Y (X)
is the free abelian group on simplices which are entirely contained in either U or V.

We claim that the inclusion CY"V (X) < C,(X) is a chain homotopy equivalence. We need to
define a homotopy inverse f : Cy(X) — cPVi(x ). The idea is to use “barycentric subdivision”.
The subdivision of an n-simplex expresses it as the union of smaller n-simplices. By the Lebesgue

Number Lemma, repeated barycentric subdivision will eventually decompose any singular n-simplex
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of X into a collection of n-simplices, each of which is either contained in A or in B. This subdivision
allows you to define a chain map f. You then show that subdivision of simplices is chain-homotopic
to the identity. See Proposition 2.21 of Hatcher for a much more detailed discussion. |
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