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5.4. The Hurewicz Theorem. We saw previously that H0(X) ⇠= Z{⇡0(X)}. What about H1(X)?
It turns out this is closely related to ⇡1(X). First note that given a map ↵ : S1 �! X, we get an
induced map Z ⇠= H1(S1) �! H1(X). If we pick a preferred generator for H1(S1), for example the
1-simplex �1 �! S1 which is the quotient map

�1 ⇠= I �! I/@I ⇠= S1,

then this picks out a particular element of H1(X).

Proposition 5.24. This element ↵⇤(1) 2 H1(X) only depends on the homotopy class of ↵.

Proof. This follows from Proposition 5.15. ⌅
We then define the Hurewicz function

h : ⇡1(X, x0) �! H1(X)

by h([↵]) = ↵⇤(1). By the proposition, this is well-defined on homotopy-classes.

Theorem 5.25 (Hurewicz). Assume that X is path-connected. Then h induces an isomorphism

H1(X) ⇠= ⇡1(X, x0)ab.

Proof. We first show that h is a group homomorphism. First, it preserves identity elements since
if we consider the constant loop at x0 as a 1-cycle, we can express it as the boundary of the
constant 2-simplex at x0. Next, suppose we have two loops ↵ and �. We wish to show that
h(↵ · �) = h(↵) + h(�). Either by using the Square Lemma (Lemma 3.16) or by writing one down
explicitly, we can define a 2-simplex �↵,� whose restriction to the boundary is the three edges ↵,
↵�, and �. Then @(�↵,�) = ↵ � ↵ · � + �. This shows that h(↵ · �) = h(↵) + h(�).

Since we now know that h is a homomorphism, we can use the universal property of abelianization
to factor

h : ⇡1(X) �! H1(X)

through ĥ : ⇡1(X)ab �! H1(X). It remains to show that ĥ is bijective.
(Surjectivity): For each x 2 X, pick a path px : x0  x. We also write p : C0(X) �! C1(X) for

the resulting function. Now for each 1-simplex a, we can define a loop ã at x0 by pa(0) · a · pa(1).
Then

h(ã) = [pa(0)] + [a] + [pa(1)] = [a] + [p � @(a)].

Now take an arbitrary 1-cycle c =
P

i niai. Then we get

h(ã1
n1 ã2

n2 · · · ãk
nk) =

X

i

ni[ai] + ni[p � @(ai)] = [c] + p([@(c)]) = [c]

since c was assumed to be a cycle.
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(Injectivity): Let ↵ 2 ⇡1(X) be in the kernel of h. We wish to show that ↵ is trivial in ⇡1(X)ab. If
h(↵) = 0, this means that ↵, when considered as a 1-simplex, is a boundary. Suppose, for example,
that

↵ = @(�)

for some 2-simplex � : �2 �! X. But @(�) = �1,2 � �0,2 + �0,1, so if this is equal to ↵ in C1(X),
then ↵ must be either �0,1 or �1,2, and the other of these edges must agree with �0,2. Write �
for the path �0,1. Then, by the square lemma, the two-simplex � gives rise to a path-homotopy
↵� 'p �. In other words, ↵ 'p cx0 .
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The trouble is that, in general, there is no reason to expect ↵ to be the di↵erential on a single
2-simplex. Rather, we expect to have

↵ = @(
X

ni�i).

Again, from the square lemma, each of these 2-simplices �i will give rise to a path-homotopy. All
of the faces of the �i’s cancel in C1(X), to leave only ↵. If we try to do the same manipulation in
⇡1(X), using the path-homotopies, we need to allow ourselves to commute elements, since this can
happen in C1(X) to allow for the cancellation there. So if we abelianize ⇡1(X), we can perform
the same cancellation to show that [↵] = [cx0 ] 2 ⇡1(X)ab. ⌅
Example 5.26. Recall from Proposition 3.44 that ⇡1(Mg)ab

⇠= Z2g. It follows that

H1(Mg) ⇠= Z2g.

Example 5.27. Recall from Example 3.48 that ⇡1(Ng)ab
⇠= Zg�1 � Z/2Z. It follows that

H1(Ng) ⇠= Zg�1 � Z/2Z.

In fact, a stronger version of the Hurewicz theorem holds. We will not prove the stronger version.

Theorem 5.28. Suppose that ⇡k(X) = 0 for k < n, where n > 1. Then Hn(X) ⇠= ⇡n(X).

Corollary 5.29. Let n > 1. Then ⇡k(Sn) =

(
Z k = n

0 0 < k < n.
.

Proof. We already showed that this is the homology of the sphere. Since Sn is simply connected,
Theorem 5.28 gives that ⇡2(Sn) ⇠= H2(Sn). If n = 2, this is Z and we are done. If n > 2, this is
0, and then we apply the Hurewicz theorem at level 3. Repeat until you reach the first nonzero
homology group. ⌅

5.5. Cellular homology. While singular homology is defined for all spaces and is nicely functorial,
it is not so practical for computing by hand. For this purpose, we introduce cellular homology,
which is defined for CW complexes.

Recall that at the end of last semester, we defined the degree of a map f : S1 �! S1 by
considering the induced map on fundamental groups. This map is multiplication by some integer,
which we called the degree. If f was not based, the definition of degree involved the change-of-
basepoint homomorphism. But now that we know about (singular) homology, there is a simpler
definition, which works equally well in higher dimensions.

Definition 5.30. Let f : Sn �! Sn be any map. for n � 1. Then the induced map on homology

f⇤ : Hn(S
n) �! Hn(S

n)

is multiplication by some integer d. We define the degree of f to be this integer d.

Fri, Apr. 20

Definition 5.31. Let X be a CW complex. Define the group Ccell
n (X) of cellular n-chains by

Ccell
n := Z{n-cells of X}.

To specify the di↵erential dn : Cn(X) �! Cn�1(X), we need to give the coe�cients in

dn(f) =
X

niei.
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Here f is an n-cell, which is described by its attaching map Sn�1 f�! skn�1X. The coe�cient ni in
the expansion is the degree of the map

Sn�1 f�! Xn�1 ⇣ Xn�1/Xn�2 ⇠=
_

Sn�1 ei�! Sn�1.

This works well if n� 1 � 1. The d1 is defined similarly. A 1-cell e is determined by the attaching
map, which simply specifies the endpoints e(1) and e(0). We define d1(e) = e(1)� e(0).

We now define the cellular homology groups to be the homology of this complex:

Hcell
n (X) := Hn(C

cell
⇤ (X)).

On the face of it, this definition does not make sense, since we have not verified that d � d = 0.
Probably the simplest way to establish this is to recognize that Ccell

n (X) ⇠= Hn(skn(X)/skn�1(X)).
Then the cellular di↵erential can be viewed as the connecting homomorphism in a Mayer-Vietoris
sequence. See the dicsussion above Theorem 2.35 of Hatcher for more details.

This definition of homology might sound complicated, but in practice it is quite simple. For
instance, if our CW complex has a single 0-cell, then each 1-cell must be a loop, and the d1-
di↵erential is just zero. Another immediate consequence of the definition is the following.

Proposition 5.32. Suppose that X is an n-dimensional CW complex. Then Hcell
k (X) = 0 for

k > n.

This is simply because X has no cells above dimension n, so that Ccell
k (X) = 0 if k > n.

Let’s look at some examples.

Example 5.33. Take X = S2. Pick the CW structure having a single vertex and a single 2-cell.
Then C1(X) = 0, so both d2 and d1 must be the zero map. The chain complex C⇤(S2) is

Z d2�! 0
d1�! Z.

Here we get H0 = H2 = Z and H1 = 0. The same would for any Sn, with n � 2.

Example 5.34. Take X = S2. Pick the CW structure having a single vertex, a single edge, and
two 2-cells attached via the identity map S1 ⇠= S1. Then C0(S2) = C1(S2) = Z and C2(S2) = Z2.
The map

d1 : C1 = Z �! C0 = Z
is d1(e) = 0 since the edge e is a loop. If we write f1 and f2 for the 2-cells, we see that d2(f1) =
d2(f2) = e. Thus the resulting chain complex is

Z2 (1 1)���! Z 0�! Z.

Here we see that H0
⇠= Z since d1 = 0, so that B0 = 0 and H0 = Z0 = Z. Next, the statement

d1 = 0 also means that Z1 = C1 = Z, and we see that d2 is surjective, so that B1 = Z1 = C1. It
follows that H1

⇠= Z. Finally, the kernel of d2 is the cyclic subgroup of Z2 generated by (1,�1), so
H2 = Z2

⇠= Z.

Example 5.35. Take X = S2. Pick the CW structure having two cells in each degree  2. Here
each attaching map Sn�1 �! Xn�1 is an identity map. Write x1 and x2 for the vertices and e1
and e2 for the edges. We have d1(ei) = x2 � x1. Similarly, we have d2(fi) = e1 � e2. The resulting
chain complex is

Z2
⇣

1 1
�1 �1

⌘
// Z2

⇣
�1 �1
1 1

⌘
// Z2

Here, the di↵erential d1 has image the subgroup generated by (�1, 1), so H0
⇠= Z2/(�1, 1) ⇠= Z.

The kernel of d1 is the subgroup generated by (1,�1), which is the image of d2, so H1 = 0. The
kernel of d2 is again the subgroup generated by (�1, 1), so that H2

⇠= Z.
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