
Wed, Jan. 17

Using problem 4 from Homework I, we get the following result.

Corollary 1.5. Let Tn

denote the n-torus Tn = S1⇥S1⇥ · · ·⇥S1
(n times). Then ⇡1(Tn) ⇠= Zn

.

Theorem 1.6. (Borsuk-Ulam Theorem) For every continuous map f : S2 �! R2
, there is an

antipodal pair of points {x,�x} ⇢ S2
such that the f(x) = f(�x).

Proof. Suppose not. Then we can define a map g : S2 �! S1 by

g(x) =
f(x)� f(�x)

kf(x)� f(�x)k .

Then g satisfies g(�x) = �g(x). Let � : S1 �! S1 be the restriction to the equator. Note that
since � extends over the northern (or southern) hemisphere, the loop � is null. We also write � for

the composition I �! S1 ��! S1.
The equation g(�z) = �g(z) means that �(�z) = ��(z) or �(t+ 1

2) = ��(t). Denote by �̃ a lift

to a path in R. Then �̃ must satisfy the equation �̃(t + 1
2) = �̃(t) + 1

2 + k for some integer k. In
particular, we find that

�̃(1) = �̃

✓
1

2

◆
+

1

2
+ k = �̃(0) + 1 + 2k.

Thus the degree of � is the odd integer 1 + 2k. This contradicts that � is null. ⌅
Application: At any point in time, there are two polar opposite points on Earth having the same
temperature and same barometric pressure. (Or pick any two continuously varying parameters)

Corollary 1.7. The sphere S2
is not homeomorphic to any subspace of R2

.

Proof. According to the theorem, there is no continuous injection S2 �! R2. ⌅
1.2. Fundamental group of spheres. We saw that S1 has a nontrivial fundamental group, but in
contrast we will see that the higher spheres all have trivial fundamental groups. A (path-connected)
space with trivial fundamental group is said to be simply connected.

Theorem 1.8. The n-sphere Sn

is simply connected if n � 2.

This follows from the following theorem.

Theorem 1.9. Any continuous map S1 �! Sn

is path-homotopic to one that is not surjective.

Let’s first use this to deduce the statement about n-spheres. Let � be a loop in Sn. We know
it is path-homotopic to a loop � that is not surjective. But recall that Sn � {P} ⇠= Rn. Thus we
can contract � using a straight-line homotopy in the complement of any missed point. It remains
to prove the latter theorem.

Proof. There are a number of ways to prove this result. For instance, it is an easy consequence of
“Sard’s Theorem” from di↵erential topology. Here is a proof using once again the Lebesgue number
lemma.

Let {U, V } be the covering of Sn, where U is the upper (open) hemisphere, and V is the comple-
ment of the North pole. Let � : S1 �! Sn be a loop. By Lebesgue, we can subdivide the interval
I into finitely many subintervals [s

i

, s
i+1] such that on each subinterval, � stays within either U or

V . We will deform � so that it misses the North pole. On the subintervals that are mapped into
V , nothing needs to be done.

Suppose [s
i

, s
i+1] is not mapped into V , so that � passes through the North pole on this segment.

Recall that the open hemisphere U is homeomorphic to Rn. The problem thus reduces to the
following: given a path in Rn, show it is path-homotopic to one not passing through the origin.
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This is simple. First, any path is homotopic to the straight-line path. If that does not pass through
the origin, great. If it does, just wiggle it a little, and it won’t any more. ⌅
Corollary 1.10. The infinite sphere S1

is simply connected.

Proof. Consider a loop ↵ in S1. The image of ↵ is then a compact subset of the CW complex
S1. It follows (see Hatcher, A.1) that the image of ↵ is contained in a finite union of cells. In
other words, the image of ↵ is contained in some Sn. By the above, ↵ is null-homotopic in Sn and
therefore in S1 as well. ⌅

Fri, Jan. 19

You showed on your homework that S1 is contractible, and this in fact implies simply connected,
as the next result shows.

Theorem 1.11. Let f : X �! Y be a homotopy equivalence. Then, for any choice of basepoint

x 2 X, the induced map

f⇤ : ⇡1(X,x)
⇠=�! ⇡1(Y, f(x))

is an isomorphism.

At first glance, this might seem obvious, since we have a quasi-inverse g : Y �! X to f , and so
we would expect g⇤ to be the inverse of f⇤. But note that there is no reason that g(f(x)) would be
x again, so g⇤ does not even map to the correct group to be the inverse of f⇤. We need to employ
some sort of change-of-basepoint to deal with this. So we take a little detour to address this issue.

1.3. Dependence on the basepoint.
Although we often talk about “the fundamental group” of a space X, this group depends on the

choice of basepoint for the loops. One thing at least should be clear: if we want to understand
⇡1(X,x0), only the path component of x0 in X is relevant. Any other path component can be
ignored. More precisely, if PC

x

denotes the path-component of a point x, then for any choice of
basepoint x0, we get an isomorphism of groups

⇡1(PC
x0 , x0) ⇠= ⇡1(X,x0).

For this reason, we will often assume from now on that our spaces are path-connected.
Under this assumption that X is path-connected, how does the fundamental group depend on

the choice of base point? Suppose that x0 and x1 are points in X. How can we compare loops
based at x0 to loops based at x1? Since X is path-connected, we may choose some path ↵ in X
from x0 to x1. Then we may use the change-of-basepoint technique that we discussed at the end of
the fall semester. If � is a loop based at x0, we get a loop ↵ · � · ↵ based at x1. Let us write �

↵

(�)
for this loop. The same argument we gave in the case X = S1 generalizes to give

Proposition 1.12.

(1) The operation �
↵

gives a well-defined operation on homotopy-classes of loops.

(2) The operation �
↵

only depends on the homotopy-class of ↵.
(3) The operation �

↵

induces an isomorphism of groups

�
↵

: ⇡1(X,x0) ⇠= ⇡1(X,x1)

with inverse induced by �
↵

.

So, as long as X is path-connected, the isomorphism-type of the fundamental group of X does
not depend on the basepoint. For example, once we know that ⇡1(R2,0) = hei, it follows that the
same would be true with any other choice of basepoint. More generally, we know that any convex
subset of Rn is simply connected.
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Proposition 1.13. Let h be a homotopy between

maps f, g : X ◆ Y . For a chosen basepoint x0 2 X,

define a path ↵ in Y by ↵(s) = h(x0, s). Then the

diagram to the right commutes.

⇡1(X,x0)
f⇤ //

g⇤ ''

⇡1(Y, f(x0))

�↵⇠=
✏✏

⇡1(Y, g(x0))

Proof. For any loop � in X based at x0, we want a path-homotopy H : �
↵

(f � �) '
p

g � �. For
convenience, let us write y0 = g(x0). For each t, let ↵

t

denote the path ↵
t

(s) = ↵(1 � (1 � s)t).
Note that ↵1 = ↵ and ↵0 is constant at ↵(1) = y0.

Then the function
H

t

= ↵
t

· (h
t

� �) · ↵
t

defines a path-homotopy c
y0 · g(�) · cy0 '

p

↵ · f(�) · ↵ = �
↵

(f(�)). ⌅
Proof of Theorem 1.11. Let g : Y �! X be a quasi-inverse to f . Then g � f ' id

X

, so Prop 1.13
gives us a diagram

⇡1(X,x0)
id⇤
⇠=

//

(gf)⇤ ''

⇡1(X,x0)

�↵⇠=
✏✏

⇡1(X, gf(x0))

Now (gf)⇤ must be an isomorphism since the other two maps in the diagram are isomorphisms.
Since (gf)⇤ = g⇤ � f⇤, the map f⇤ must be injective and similarly g⇤ must be surjective.

But now we can swap the roles of f and g, getting a diagram

⇡1(Y, f(x0))
id⇤
⇠=
//

(fg)⇤ ((

⇡1(Y, f(x0))

 ↵⇠=
✏✏

⇡1(Y, fgf(x0))

It then follows that g⇤ : ⇡1(Y, f(x0)) �! ⇡1(X, gf(x0)) is injective. Since we already showed it is
surjective, we deduce that it is an isomorphism. Now going back to our first diagram, we get

g⇤ � f⇤ = �
↵

, or f⇤ = g�1
⇤ � �

↵

,

so that f⇤ : ⇡1(X,x0) �! ⇡1(Y, f(x0)) is an isomorphism. ⌅
So far, we know a number of simply connected spaces (Rn, Sn for n � 2), and we know that

⇡1(Tn) ⇠= Zn for any n � 1. Can there be torsion in the fundamental group? For example, is it
possible that for some nontrivial loop � in X, winding around the loop twice gives a trivial loop?
The next example will have this property.

6


