Wed, Jan. 17

Using problem 4 from Homework I, we get the following result.

**Corollary 1.5.** Let  $T^n$  denote the *n*-torus  $T^n = S^1 \times S^1 \times \cdots \times S^1$  (*n* times). Then  $\pi_1(T^n) \cong \mathbb{Z}^n$ .

**Theorem 1.6.** (Borsuk-Ulam Theorem) For every continuous map  $f : S^2 \longrightarrow \mathbb{R}^2$ , there is an antipodal pair of points  $\{x, -x\} \subset S^2$  such that the f(x) = f(-x).

*Proof.* Suppose not. Then we can define a map  $g: S^2 \longrightarrow S^1$  by

$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}.$$

Then g satisfies g(-x) = -g(x). Let  $\gamma : S^1 \longrightarrow S^1$  be the restriction to the equator. Note that since  $\gamma$  extends over the northern (or southern) hemisphere, the loop  $\gamma$  is null. We also write  $\delta$  for the composition  $I \longrightarrow S^1 \xrightarrow{\gamma} S^1$ .

The equation g(-z) = -g(z) means that  $\gamma(-z) = -\gamma(z)$  or  $\delta(t + \frac{1}{2}) = -\delta(t)$ . Denote by  $\tilde{\delta}$  a lift to a path in  $\mathbb{R}$ . Then  $\tilde{\delta}$  must satisfy the equation  $\tilde{\delta}(t + \frac{1}{2}) = \tilde{\delta}(t) + \frac{1}{2} + k$  for some integer k. In particular, we find that

$$\tilde{\delta}(1) = \tilde{\delta}\left(\frac{1}{2}\right) + \frac{1}{2} + k = \tilde{\delta}(0) + 1 + 2k.$$

Thus the degree of  $\gamma$  is the odd integer 1 + 2k. This contradicts that  $\gamma$  is null.

**Application:** At any point in time, there are two polar opposite points on Earth having the same temperature and same barometric pressure. (Or pick any two continuously varying parameters)

**Corollary 1.7.** The sphere  $S^2$  is not homeomorphic to any subspace of  $\mathbb{R}^2$ .

*Proof.* According to the theorem, there is no continuous injection  $S^2 \longrightarrow \mathbb{R}^2$ .

1.2. Fundamental group of spheres. We saw that  $S^1$  has a nontrivial fundamental group, but in contrast we will see that the higher spheres all have trivial fundamental groups. A (path-connected) space with trivial fundamental group is said to be simply connected.

**Theorem 1.8.** The *n*-sphere  $S^n$  is simply connected if  $n \ge 2$ .

This follows from the following theorem.

**Theorem 1.9.** Any continuous map  $S^1 \longrightarrow S^n$  is path-homotopic to one that is not surjective.

Let's first use this to deduce the statement about *n*-spheres. Let  $\gamma$  be a loop in  $S^n$ . We know it is path-homotopic to a loop  $\delta$  that is not surjective. But recall that  $S^n - \{P\} \cong \mathbb{R}^n$ . Thus we can contract  $\delta$  using a straight-line homotopy in the complement of any missed point. It remains to prove the latter theorem.

*Proof.* There are a number of ways to prove this result. For instance, it is an easy consequence of "Sard's Theorem" from differential topology. Here is a proof using once again the Lebesgue number lemma.

Let  $\{U, V\}$  be the covering of  $S^n$ , where U is the upper (open) hemisphere, and V is the complement of the North pole. Let  $\gamma : S^1 \longrightarrow S^n$  be a loop. By Lebesgue, we can subdivide the interval I into finitely many subintervals  $[s_i, s_{i+1}]$  such that on each subinterval,  $\gamma$  stays within either U or V. We will deform  $\gamma$  so that it misses the North pole. On the subintervals that are mapped into V, nothing needs to be done.

Suppose  $[s_i, s_{i+1}]$  is not mapped into V, so that  $\gamma$  passes through the North pole on this segment. Recall that the open hemisphere U is homeomorphic to  $\mathbb{R}^n$ . The problem thus reduces to the following: given a path in  $\mathbb{R}^n$ , show it is path-homotopic to one not passing through the origin. This is simple. First, any path is homotopic to the straight-line path. If that does not pass through the origin, great. If it does, just wiggle it a little, and it won't any more.

## **Corollary 1.10.** The infinite sphere $S^{\infty}$ is simply connected.

*Proof.* Consider a loop  $\alpha$  in  $S^{\infty}$ . The image of  $\alpha$  is then a compact subset of the CW complex  $S^{\infty}$ . It follows (see Hatcher, A.1) that the image of  $\alpha$  is contained in a finite union of cells. In other words, the image of  $\alpha$  is contained in some  $S^n$ . By the above,  $\alpha$  is null-homotopic in  $S^n$  and therefore in  $S^{\infty}$  as well.

## Fri, Jan. 19

You showed on your homework that  $S^{\infty}$  is contractible, and this in fact implies simply connected, as the next result shows.

**Theorem 1.11.** Let  $f : X \longrightarrow Y$  be a homotopy equivalence. Then, for any choice of basepoint  $x \in X$ , the induced map

$$f_*: \pi_1(X, x) \xrightarrow{\cong} \pi_1(Y, f(x))$$

is an isomorphism.

At first glance, this might seem obvious, since we have a quasi-inverse  $g: Y \longrightarrow X$  to f, and so we would expect  $g_*$  to be the inverse of  $f_*$ . But note that there is no reason that g(f(x)) would be x again, so  $g_*$  does not even map to the correct group to be the inverse of  $f_*$ . We need to employ some sort of change-of-basepoint to deal with this. So we take a little detour to address this issue.

## 1.3. Dependence on the basepoint.

Although we often talk about "the fundamental group" of a space X, this group depends on the choice of basepoint for the loops. One thing at least should be clear: if we want to understand  $\pi_1(X, x_0)$ , only the path component of  $x_0$  in X is relevant. Any other path component can be ignored. More precisely, if  $PC_x$  denotes the path-component of a point x, then for any choice of basepoint  $x_0$ , we get an **isomorphism of groups** 

$$\pi_1(PC_{x_0}, x_0) \cong \pi_1(X, x_0).$$

For this reason, we will often assume from now on that our spaces are path-connected.

Under this assumption that X is path-connected, how does the fundamental group depend on the choice of base point? Suppose that  $x_0$  and  $x_1$  are points in X. How can we compare loops based at  $x_0$  to loops based at  $x_1$ ? Since X is path-connected, we may choose <u>some</u> path  $\alpha$  in X from  $x_0$  to  $x_1$ . Then we may use the change-of-basepoint technique that we discussed at the end of the fall semester. If  $\gamma$  is a loop based at  $x_0$ , we get a loop  $\overline{\alpha} \cdot \gamma \cdot \alpha$  based at  $x_1$ . Let us write  $\Phi_{\alpha}(\gamma)$ for this loop. The same argument we gave in the case  $X = S^1$  generalizes to give

## Proposition 1.12.

- (1) The operation  $\Phi_{\alpha}$  gives a well-defined operation on homotopy-classes of loops.
- (2) The operation  $\Phi_{\alpha}$  only depends on the homotopy-class of  $\alpha$ .
- (3) The operation  $\Phi_{\alpha}$  induces an isomorphism of groups

$$\Phi_{\alpha}: \pi_1(X, x_0) \cong \pi_1(X, x_1)$$

with inverse induced by  $\Phi_{\overline{\alpha}}$ .

So, as long as X is path-connected, the isomorphism-type of the fundamental group of X does not depend on the basepoint. For example, once we know that  $\pi_1(\mathbb{R}^2, \mathbf{0}) = \langle e \rangle$ , it follows that the same would be true with any other choice of basepoint. More generally, we know that any convex subset of  $\mathbb{R}^n$  is simply connected. **Proposition 1.13.** Let h be a homotopy between maps  $f, g: X \Rightarrow Y$ . For a chosen basepoint  $x_0 \in X$ , define a path  $\alpha$  in Y by  $\alpha(s) = h(x_0, s)$ . Then the diagram to the right commutes.



*Proof.* For any loop  $\gamma$  in X based at  $x_0$ , we want a path-homotopy  $H : \Phi_{\alpha}(f \circ \gamma) \simeq_p g \circ \gamma$ . For convenience, let us write  $y_0 = g(x_0)$ . For each t, let  $\alpha_t$  denote the path  $\alpha_t(s) = \alpha(1 - (1 - s)t)$ . Note that  $\alpha_1 = \alpha$  and  $\alpha_0$  is constant at  $\alpha(1) = y_0$ .

Then the function

$$H_t = \overline{\alpha_t} \cdot (h_t \circ \gamma) \cdot \alpha_t$$
  
defines a path-homotopy  $\overline{c}_{y_0} \cdot g(\gamma) \cdot c_{y_0} \simeq_p \overline{\alpha} \cdot f(\gamma) \cdot \alpha = \Phi_{\alpha}(f(\gamma)).$ 

Proof of Theorem 1.11. Let  $g: Y \longrightarrow X$  be a quasi-inverse to f. Then  $g \circ f \simeq id_X$ , so Prop 1.13 gives us a diagram

Now  $(gf)_*$  must be an isomorphism since the other two maps in the diagram are isomorphisms. Since  $(gf)_* = g_* \circ f_*$ , the map  $f_*$  must be injective and similarly  $g_*$  must be surjective.

But now we can swap the roles of f and g, getting a diagram

$$\pi_1(Y, f(x_0)) \xrightarrow[(fg)_*]{\operatorname{id}_*} \pi_1(Y, f(x_0))$$

$$\cong \bigvee_{(fg)_*} \cong \bigvee_{\pi_1(Y, fgf(x_0))}$$

It then follows that  $g_*: \pi_1(Y, f(x_0)) \longrightarrow \pi_1(X, gf(x_0))$  is injective. Since we already showed it is surjective, we deduce that it is an isomorphism. Now going back to our first diagram, we get

$$g_* \circ f_* = \Phi_\alpha$$
, or  $f_* = g_*^{-1} \circ \Phi_\alpha$ ,

so that  $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0))$  is an isomorphism.

So far, we know a number of simply connected spaces ( $\mathbb{R}^n$ ,  $S^n$  for  $n \geq 2$ ), and we know that  $\pi_1(T^n) \cong \mathbb{Z}^n$  for any  $n \geq 1$ . Can there be torsion in the fundamental group? For example, is it possible that for some nontrivial loop  $\gamma$  in X, winding around the loop twice gives a trivial loop? The next example will have this property.