Mon, Jan. 22

1.4. Fundamental group of RP?. Recall that the real projective plane RP? is defined as the
quotient of S? by the equivalence relation  ~ —z. The equivalence classes are precisely the sets
of pairs of antipodal points. Another way to think about this is that each pair of antipodal points
corresponds to a straight line through the origin. We will determine 71 (RP?). Today, we're going
to calculate 71 (RPP?), but first I want to discuss a result about contractibility of paths.

Proposition 1.14. (1) Let a € w1 (X, x0). Then a =~ ¢z, if and only if o : S* — X extends
to a map D?> — X. B
(2) Let a and 8 be paths in X from x toy. Then o~ 5 if and only if the loop « (B is null.

Proof.
(1) (=) This follows from Homework II.1.
(<) Again using Homework II.1, we may assume given a homotopy h : a =~ ¢,. Since h is
not assumed to be a path-homotopy, the formula v(s) = h(0, s) defines a possible nontrivai
path. The picture
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where hq(s,t) = y(st) and hs(s,t) = 7(st), defines a path-homotopy H : o >, v - ¢z - 7.
(2) The point is that
a~, B = aB ~, BB~y ¢y
and similarly
aB ~p ey = o~ aBf =~y el = B
[ |

Recall that for S!, the exponential map p : R — S! was key. The analogue of that map for

RP? will be the quotient map
q: 5% — RP?

Note that in this case, the “fiber” (the preimage of the basepoint) consists of two points. Another
ingredient that was used for S! was that it has a nice cover. The same is true for RP?: there is a
cover of RP? by open sets Uy, Us, Us such that each preimage ¢~*(U;) is a disjoint union Vii LV
such that on each component V; ;, the map ¢ gives a homeomorphism ¢ : V; ; = U;. For instance,
U; consists of points g(x, v, z) with  # 0. Then ¢~ (U;) is the disjoint union of the left and right
open hemispheres in S?. On each hemisphere H, ¢ restricts to a homeomorphism ¢ : H = Uj.

For any point € ¢~1(1) = {—1,1}, we define a loop I'(x) at T in RP? as follows: take any path
a in S% from 1 to x. Then I'(z) = ga is a loop in RP2. Note that this is well-defined because S
is simply-connected, so that any two paths between 1 and = are homotopic. When = = 1, this
of course gives the class of the constant loop, but when « = —1, this gives a nontrivial loop in RP?.
We claim that this is a bijection. So there is only one nontrivial loop!

To see this, we construct an inverse w : m1 (RP?) — {—1,1}. We need some lemmas:

Lemma 1.15. Given any loop in RP?, there is a unique lift to a path in S? starting at 1.

The proof of this lemma is exactly the same as that of the first lemma in the proof for the
circle.
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Lemma 1.16. Let h : v ~, & be a path-homotopy between loops at 1 in RP2. Then there is a
unique lift h: I x I — S? such that h(0,0) = 1.

Again, the proof here is identical to that for the sphere. Let’s see how we can use the lemmas to
define w. Given any loop 7 in RP?2, there is a unique lift 4 in S? starting at 1. Since it is a lift of
a loop, we must have (1) € {—1,1}. So we define w(y) = 4(1). That this is well-defined follows
from the second lemma.

It remains to show that w really is the inverse. Let z € {—1,1}. Then I'(z) = g o « for some
path a in S? from 1 to 2. To compute w(I'(z)), we must find a lift of I'(x), but we already know
that a is the lift. Thus w(I'(z)) = a(1) = .

Similarly, suppose 7 is any loop in RP2. Let 7 be a lift. Then I'(w(y)) = I'((1)) = qa, where a
is any path from 1 to 4(1). But of course ¥ is such a path and v = ¢7.

Note that we have given a bijection between 71 (RP?) and {—1, 1}, but we have not talked about
a group structure. That’s because we don’t need to: there is only one group of order two! We have
shown that

7T1(RIP2) = CQ.

~

In fact, the same proof (replacing S? by S™) shows that, for n > 2, we have 1 (RP") = Cs.

Wed, Jan. 24 ‘

1.5. Fundamental group of S'Vv.S'. We will do one more example before describing the repeated
phenomena we have seen in these examples. First, recall from last semester that given based spaces
(X, z0) and (Y, yo0), their wedge sum, or one-point union, is X VY = X I Y/~, where xy ~ yp.
Today, we want to study the fundamental group of S' Vv S! following the same approach as in the
previous examples. We want to once again find a nice map p : X — S v S! for some X. What
we really want is an example of the following:

Definition 1.17. A surjective map p : ' — B is called a covering map if every b € B has a
neighborhood U such that p~!(U) is a disjoint union p~!(U) = II;V; and such that p restricts to a

homeomorphism p : V; = U. We say that the neighborhood U is evenly covered by p.

Remark 1.18. It is common to assume that F is connected and locally path-connected. We will
assume this from now on, as it simplifies the theory. So as to avoid repeatedly saying (or writing)
“connected and locally path-connected”, I will simply call these spaces very connected.

It is important to note that the neighborhood condition is local in B, not E. This contrasts with
the following definition.

Definition 1.19. A map f: X — Y is said to be a local homeomorphism if every x € X has
a neighborhood U such that f(U) CY is open and f, : U — f(U) is a homeomorphism.

Every covering map is a local homeomorphism: given e € F, take an evenly covered neighborhood
U of p(e). Then e is contained in one of the V}’s, which is the desired neighborhood . The converse
is not true, as the next example shows.

Example 1.20. Consider the usual exponential map p : R — S, but now restrict it to
(0,8.123876). This is a local homeomorphism but not a covering map. For instance, the stan-
dard basepoint of S has no evenly covered neighborhood under this map.
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Ok, now back to S' Vv S1. It is tempting to take X = R since S' v S!
looks locally like a line, but there is a problem spot at the crossing of the
figure eight. To fix this, we might try to take X to be the union of the U
coordinate axes inside of R?. This space is really just RV R, and so we have ) X\
the map pVp: RVR — S'v 8. We want a cover of S' Vv S! which is Q@
nicely compatible with our map from X. Suppose we consider the cover Uy,

Us, and Us, where U; is the complement of the basepoint in one circle, Us is

the complement of the basepoint in the other, and finally Us is some small
neighborhood of the basepoint. Well, U; and U; are good neighborhoods for

pV p, but Us is not. The map p V p does not give a homeomorphism from

each component of the preimage of Us to Us. To fix this, we would want to =+
add infinitely many cross-sections to each of the axes. ,15,

Instead, we take X to be the fractal space given in the picture (see also + o+
page 59 of Hatcher). We define p : X — S' Vv St as follows. On horizontal s
segments, use the exponential map to the right branch of S*\v.S'. On wertical
segments, use the left branch. Then the cover Uy, Us, and Us from above is
compatible with this new map p, and we see that p is a covering map.

Lemma 1.21. The space X is simply-connected.

Proof. The main point is that any loop in X is compact and therefore contained in a finite union
of edges. Consider the edge furthest from the basepoint that contains part of the loop. The loop is
homotopic to one constant on this furthest edge. This furthest edge is now no longer needed, and
we have a new furthest edge. We can repeat until the loop is completely contracted. |

Let F = p~!(*) be the fiber. Any point in this fiber may be uniquely described as a “word” in
the letters u, r, d, and [. Define

[:F— m(Stvsh
as follows: given y € F, let oy, be any path in X from the basepoint to y. Then I'(y) = poa. It
does not matter which «, we choose since X is simply-connected. We will define an inverse to I',

but we now state the needed lemmas in the generality of coverings.

Lemma 1.22. Let p: E — B be a covering and suppose p(e) = b. Given any path starting at b
in B, there is a unique lift to a path in E starting at e.

The proof of this lemma is exactly the same as that of Lemma 1.3, for the circle.

Lemma 1.23. Let p : E — B be a covering and suppose p(e) = b. Let h : v ~, § be a path-
homotopy between paths starting at b in B. Then there is a unique lift h:IxI—s E such that
h(0,0) = e.

Just as in the previous examples, the above lemmas allow us to define w : m (S v S!) — F
by the formula w(vy) = 4(1). We will skip the verification that I" and w are inverse, as this really
follows the same script.
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We have established a bijection between 71(S* Vv S!) and the set of “words” in the letters u, r,
d, and [. It remains to describe the group structure. For this, we will back up a little.

Definition 1.24. Let p: E — B and q : E/ — B be covers of a space B. A map of covers
from E to E’ is simply a map of spaces ¢ : E — E’ such that qo f = p. These are also sometimes
called covering homomorphisms.

The special case in which the two covers are the same cover and f is a homeomorphism is referred
to as a deck transformation. We write Aut(F) for the set of all deck transformations of E. This
is a group under composition.

Keeping our notation from earlier, let b € B be a basepoint and write F' = p~1(b) for the fiber.
Note that any deck transformation ¢ : £ — FE must take F' to F. Let us pick a basepoint e for
E. Since we want the covering map ¢ to be based, this means that e lies in the fiber F'. We may
now define a map A : Aut(E) — F by A(y) = ¢(e).

Theorem 1.25. Let p : X — B be a covering such that X is simply connected. Then the

map A : Aut(X) — F is a bijection and the composition T' o A is an isomorphism of groups
Aut(X) =2 m1(B).

Proof. Let us first show that A is injective. Thus let ¢ and @9 be deck transformations which
agree at e. Let z € X be any point and let  be any path in X from e to . Then the paths ¢j o«
and @9 o v are both lifts of p o a starting at the common point ¢;(e) = w2(e). By the uniqueness
of lifts, these must be the same path. It follows that their endpoints, ¢;(x) and ¢2(z) agree.

It remains to show that A is surjective. Let f € F' be any point in the fiber. We wish to produce
a deck transformation ¢ : X — X such that ¢(e) = f. We build the map ¢ locally and patch
together. Let x € X and pick any path « : e ~» z. Then pa is a path in B starting at b and
ending at px. By the path-lifting lemma, there is a unique lift pa in X starting at f. We define
o(z) = pa(l). From this definition, continuity is not at all clear. But the point is that since
p is a covering, we can choose an evenly-covered neighborhood U of p(z). Let V' be the slice of
p~Y(U) containing  and V' the slice containing (x) = pa(1). Then the restriction of ¢ to V is
the composition of homeomorphisms

VHULV.
By the local criterion for continuity (Prop 2.19 in Lee), it follows that ¢ is continuous.

By construction, ¢ will be a map of covers, as long as we can verify that it is well-defined. But
if 0 : e ~ x is another choice of path, we know that a ~, ¢ because X is simply-connected. It
follows that pa >, pd, and by lifting the path-homotopy, it follows that pa =, ];5, so that their
right endpoints agree.

We will finish the proof next time.
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