
Mon, Feb. 5

Proposition 2.8. Suppose that ' : E1 �! E2 is a map of covers. Then ' is a covering map.

Proof. We start by showing that ' is surjective. Let e 2 E2. Let b = p2(e), and pick any e0 2 p�1
1 (b).

Since E2 is very connected, we can find a path ↵ : '(e0) e in E2. We can push this path ↵ down
to a loop p2↵ in B and then lift this uniquely to a path ↵̃ in E1 starting at e0. Now '(↵̃) is a lift
of p2↵ in E2 starting at '(e0), so by uniqueness of lifts, we must have '(↵̃) = ↵. In particular,
'(↵̃(1)) = e.

Now we show that e has an evenly-covered neighborhood of e. We know that the point p2(e) 2
B has an evenly covered neighborhood U2 (with respect to p2). Let U1 be an evenly covered
neighborhood, with respect to p1, of p2(e). Write U for the component of U1 \U2 containing p2(e).
Then p�1

2 (U) ⇠= qVi. Let V0 be the component containing e. Write p�1
1 (U) ⇠= qWj . Then, since U

is connected, each Vi and Wj must be connected. It follows that
' takes each Wj into a single Vi, so that '�1(V0) ✓ p�1

1 (U) is a
disjoint union of some of the Wj ’s, and it follows that ' restricts to
a homeomorphism on each component because both p1 and p2 do so.

⌅
It follows that any universal cover X �! B covers every other covering E �! B.

Remark 2.9. Recall that in the proof of Theorem 1.25, we ended up building a map of covers
' : X �! X corresponding to any point in the fiber F , but we wanted to know it was in fact
a homeomorphism. Prop 2.8 now gives us that it is a covering map, so that according to the
homework, it su�ces to show that the ' we constructed was injective. This can be seen by verifying
that it is injective on each fiber.

2.2. The monodromy action. Our next goal is to completely understand the possible covers of a
given space B. There are two avenues of approach. On the one hand, Prop. 2.1 tells us that covering
spaces give rise to subgroups of ⇡1(B), so we can try to understand the collection of subgroups.
Another approach, which we will look at next, focuses on the fiber F = p�1(b0).

It will be convenient in what follows to write G = ⇡1(B, b0) and F = p�1(b0) ⇢ E. Given a loop
� based at b0 and a point f 2 F , we will write �̃f for the lift of � which starts at f .

Theorem 2.10. Let p : E �! B be a covering and let F = p�1(b) be the fiber over the basepoint.
Then the function

a : F ⇥ ⇡1(B) �! F, (f, [�]) 7! �̃f (1)

specifies a transitive right action of ⇡1(B) on the fiber F . This is called the monodromy action.

Proof. Recall that we have already showed this to be well-defined.
Let cb0 be the constant loop at b0. Then the constant loop cf at f in E is a lift of cb0 starting

at f , so by uniqueness it must be the only lift. Thus f · [cb0 ] = f .
Now let ↵ and � be loops at b. We wish to show that (f · ↵) · � = f · (↵ · �). Let f2 = ↵̃f (1).

Then ↵̃f · �̃f2 is a (= the) lift of ↵ · � starting at f , so

f · (↵ · �) = ↵̃f · �̃f2(1).
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On the other hand, f · ↵ = ↵̃f (1) = f2, so

(f · ↵) · � = f2 · � = �̃f2(1)

Finally, to see that this action is transitive, let f1 and f2 be points in the fiber F . Let � be a path
in E from f1 to f2. Then ↵ = p � � is a loop at b0. Furthermore ↵̃f1 = �, so f1 ·↵ = �(1) = f2. ⌅

Note that if we instead wrote path-composition in the “correct” order (i.e. in the same order as
function composition), this would give a left action of ⇡1(B) on F .

By the Orbit-Stabilizer theorem, since G acts transitively on F , there is an isomorphism of right
G-sets F ⇠= Ge0\G, where Ge0  G is the stabilizer of e0.

Wed, Feb. 7

Proposition 2.11. The stabilizer of e 2 F under the monodromy action is the subgroup
p⇤(⇡1(E, e))  ⇡1(B, b0).

Proof. Let [�] 2 ⇡1(E, e). Then � is a lift of p � � starting at e, so e · p⇤(�) = �(1) = e. Thus p⇤(�)
stabilizes e.

On the other hand, let [↵] 2 ⇡1(B, b0) and suppose that e · [↵] = e. This means that ↵ lifts to a
loop ↵̃ in E. Thus ↵ = p � ↵̃ and [↵] 2 p⇤(⇡1(E, e)). ⌅
Corollary 2.12. Let p : E �! B be a covering. Then, writing H = p⇤(⇡1(E, e)) the map

H\⇡1(B, b)
⇠=�! F.

H � 7! f · �

is an identification of right ⇡1(B)-sets

We have seen that any covering gives rise to a transitive G-set. We would also like to understand
maps of coverings.

Definition 2.13. Let X and Y be (right) G-sets. A function f : X �! Y is said to be G-
equivariant (or a map of G-sets) if f(xg) = f(x) · g for all x.

Proposition 2.14. Let ' : E1 �! E2 be a map of covers of B. The induced map on fibers
F1 �! F2 is ⇡1(B)-equivariant.

Proof. Let [�] 2 ⇡1(B) and f 2 F1. We have f · [�] = �̃f (1), where �̃f is the lift of � starting at
f . Similarly, we have '(f) · [�] = �̃'(f)(1). But '(�̃) is a lift of � starting at '(�(0)) = '(f), so
�̃'(f) = '(�̃f ). Thus

'(f) · [�] = �̃'(f)(1) = '(�̃f )(1) = '(�̃f (1)) = '(f · [�]).
⌅

Proposition 2.15. Let H,K  G. Then every G-equivariant map ' : H\G �! K\G is of the
form Hg 7! K�g for some � 2 G satisfying �H��1  K.

Proof. Since H\G is a transitive G-set, an equivariant map out of it is determined by the value at
any point. Suppose we stipulate

He 7! K�.

Then equivariance would force
Hg 7! K�g.

Is this well-defined? Since Hg = Hhg for any h 2 H, we would need K�g = K�hg. Multiplying
by g�1��1 gives K = K�h��1. Since h 2 H is arbitrary, this says that �H��1  K. ⌅
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Corollary 2.16. A G-equivariant map ' : H\G �! K\G exists if and only if H is conjugate in G
to a subgroup of K. The two orbits are isomorphic (as right G-sets) if and only if H is conjugate
to K.

Notation. Given covers (E1, p1) and (E2, p2) of B, we denote by MapB(E1, E2) the set of cov-
ering homomorphisms ' : E1 �! E2. Given two right G-sets X and Y , we denote by HomG(X,Y )
the set of G-equivariant maps X �! Y .

The following theorem classifies covering homomorphisms.

Theorem 2.17. Let E1 and E2 be coverings of B. Then Proposition 2.14 induces a bijection

MapB(E1, E2)
⇠=�! HomG(F1, F2).

Proof. The key is that a covering homomorphism is a lift in the diagram to
the right. Uniqueness of lifts gives injectivity in the theorem. For surjectiv-
ity, we use the lifting criterion Prop 2.5. Thus suppose given a G-equivariant
map � : F1 �! F2 and fix a point e1 2 F1. Let e2 = �(e1) 2 F2. The lifting
criterion will provide a lift if we can verify that

(p1)⇤(⇡1(E1, e1))  (p2)⇤(⇡1(E2, e2)).

But remember that according to Prop 2.11, these are precisely the stabilizers
of e1 and e2, respectively. Writing H1 and H2 for these groups, the map
� : F1 �! F2 corresponds to a map

b� : H1\G �! H2\G.

According to Prop 2.15, this means that �H1�
�1  H2, where b�(H1e) =

H2�. The fact that �(e1) = e2 means that � = e. SoH1  H2 as desired. ⌅

E2

p2
✏✏

E1 p1
//

'
>>

B

Corollary 2.18. If E is a cover of B, then we have group isomorphisms

AutB(E) ⇠= AutG(H\G,H\G) ⇠= NG(H)/H,

where NG(H) is the normalizer of H in G, consisting of those elements of G which conjugate H
to itself.

Proof. Theorem 2.17 gives the first bijection. By Corollary 2.15, we have a surjective group ho-
momorphism NG(H) �! AutG(H\G,H\G), and it remains only to identify the kernel. But
� 2 NG(H) lies in the kernel if Hg 7! H�g is the identity map of H\G, which happens just if
� 2 H. So we conclude that the kernel is H. ⌅

The quotient group NG(H)/H is known as the Weyl group of H in G and is sometimes denoted
WG(H).

Fri, Feb. 9

2.3. The classification of covers. We have almost shown that working with covers of B is the
same as working with transitive right G-sets (technically, we are heading to an “equivalence of
categories”). All that is left is to show that for every G-orbit F , there is a cover p : E �! B whose
fiber is F as a G-set.

We assume that B has a universal cover q : X �! B. Recall that we showed in Theorem 1.25
that the group of deck transformations of X is isomorphic to G.

Proposition 2.19. The (left) action of G on X via deck transformations is free and properly
discontinuous.
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Proof. Let x 2 X and suppose gx = x for some g 2 G. Recall that here g is a covering homomor-
phism X �! X and thus a lift of q : X �! B. By the uniqueness of lifts, since g looks like the
identity at the point x, it must be the identity. This shows the action is free.

Again, let x 2 X. We want to find a neighborhood V of x such that only finitely many translates
gV meet V . Consider b = q(x). Let U be an evenly-covered neighborhood of b. Then q�1(U) ⇠=`

Vi, and x 2 V j for some j. Recall that G freely permutes the pancakes Vi. In particular, the
only translate of Vj that meets Vj is the identity translate eVj . ⌅

According to Homework IV.2, this means that the quotient map X �! G\X is a cover. Actually,

the cover X
q�! B factors through a homeomorphism G\X ⇠= B. If we consider the action of a

subgroup H  G, it is still free and properly discontinuous. So we get a covering

qH : X �! H\X = XH

for every H. Moreover, the universal property of quotients gives an induced map

pH : H\X �! B.

Proposition 2.20. The map pH : H\X �! B is a covering map, and the fiber F is isomorphic
to H\G as a G-set.

Proof. Let b 2 B. Then we have a neighborhood U which is evenly-covered by q. Recall again that
the G-action, and therefore also the H-action, simply permutes the pancakes in p�1(U). We thus
get an action of H on the indexing set I for the pancakes in p�1(U). If we write Wi = qH(Vi), we
thus have the diagram

q�1(U)
qH // // p�1

H (U)
pH // // U

a

i2I
Vi

⇠=

OO

//
a

j2H\I

Wj
//

⇠=

OO

U

To see that the restriction of pH to a single Wj gives a homeomorphism, we use the fact that
qH : Vj �! Wj is a homeomorphism, since qH : X �! XH is a covering, and that q : Vj �! U is
a homeomorphism. It follows that pH = q � q�1

H is a homeomorphism.
For the identification of the fiber F ✓ XH , notice that the H-action on X acts on each fiber

separately, and the quotient of this action on the fiber of X gives precisely H\G. ⌅

Example 2.21. Suppose that G = ⌃3, the symmet-
ric group on 3 letters, and let H = {e, (12)}  G. If
we take an evenly-covered neighborhood U in B, then
the situation described in the proof above is given in
the picture to the right.
As an aside, note that XH here is an example of a
covering in which the deck transformations do not act
transitively on the fibers.

To sum up, we have shown that if B has a universal cover, then the assignment (E, p) 7! F gives
an “equivalence of categories” between coverings of B (CovB) and G-orbits (OrbG).
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