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Proof. (Continued . . . ) Finally, we wish to show that this is a disjoint union. By the definition of
the topology on X, each U [�] is open. Thus suppose that [↵] 2 U [�1] \ U [�2]. This means that

[↵] = [�1�1] = [�2�2].

In other words,
[�1�1�2] = [�2].

Since U is relatively simply-connected, this implies that [�1] = [�2]. So any two overlapping U [�]
are in fact the same. To finish the proof that q is a covering, we need to show that q restricts to a

homeomorphism q : U [�]
⇠=�! U . Surjectivity follows from the assumption that U is path-connected.

Injectivity is the relatively simply-connected hypothesis. Finally, q takes any basis V [�] to the open
set V (since V is path-connected), so it is open. We have shown that q is a covering map.

The final step is to show that X is very connected and simply connected. Since X is locally
homeomorphic to B and B is locally path-connected, it follows that the same is true of X. Next,
we show that X is path-connected (and therefore connected). Let [�] 2 X. We define a path h
in X from the constant path [cb0 ] to [�] by h(s) = [�|[0,s]]. In the interest of time, we skip the
verification that h is continuous (but see Lee, proof of Theorem 11.43).

To see that X is simply connected, let � be a loop in X at the basepoint [cb0 ]. Write � = q � �.
Then � is a lift of �, but so is the loop s 7! [�[0,s]]. By uniqueness of lifts, [�(s)] = [�[0,s]]. Then,
since � is a loop, we have

[�] = [�[0,1]] = [�(1)] = [�(0)] = [�[0,0]] = [cb0 ].

In other words, � is null. Since q is a covering, this implies that � is null as well. ⌅
We have shown that if a space is semilocally simply-connected, then it has a universal cover.

So to provide an example of a space without a universal cover, it su�ces to give an example of a
space with a point which has no relatively simply connected neighborhood.

Example 2.26 (The Hawaiian earring). Let Cn ✓ R2 be the circle of radius 1/n centered at
(1/n, 0). So each such circle is tangent to the y-axis at the origin. Let C = [nCn. We claim that
the origin has no relatively simply connected neighborhood. Indeed, let U be any neighborhood
of the origin. Then for large enough n, the circle Cn is contained in U . A loop ↵ that goes once
around the circle Cn is not contractible in C. To see this, note that the map rn : C �! S1 which
collapses every circle except for Cn is a retraction. The loop r � ↵ is not null, so ↵ can’t be null.

This example looks like an infinite wedge of circles, but it is not just a wedge. For instance, in
each Cn consider an open interval Un of radian length 1/n centered at the origin (or the open left
semicircle, if you prefer). The union U = [nUn of the Un’s is open in the infinite wedge of circles
but not in C, since no ✏-neighborhood of the origin is contained in U .

Wed, Feb. 21

3. The van Kampen Theorem

The focus of the next unit of the course will be on computation of fundamental groups.
One example we have already studied is the fundamental group of S1 _ S1. We saw that this is

the free group on two generators. We will see similarly that the fundamental group of S1 _S1 _S1

is a free group on three generators. We will also want to compute the fundamental group of the
two-holed torus (genus two surface), the Klein bottle, and more.

The main idea will be to decompose a space X into smaller pieces whose fundamental groups are
easier to understand. For instance, if X = U [V and we understand ⇡1(U), ⇡1(V ), and ⇡1(U \V ),
we might hope to recover ⇡1(X).

20



Proposition 3.1. Suppose that X = U [ V , were U and V are path-connected open subsets and
both contain the basepoint x0. If U \V is also path-connected, then the smallest subgroup of ⇡1(X)
containing the images of both ⇡1(U) and ⇡1(V ) is ⇡1(X) itself.

In group theory, we would say ⇡1(X) = ⇡1(U)⇡1(V ).
Note that we really do need the assumption that U \ V is path-connected. If we consider U

and V to be open arcs that together cover S1, then both U and V are simply-connected, but their
intersection is not path-connected. Note that here that the product of two trivial subgroups is not
⇡1(S1) ⇠= Z!
Proof. Let � : I �! X be a loop at x0. By the Lebesgue number lemma, we can subdivide the
interval I into smaller intervals [si, si+1] such that each subinterval is taken by � into either U or
V . We write �1 for the restriction of � to the first subinterval. Suppose, for the sake of argument,
that �1 is a path in U and that �2 is a path in V . Since U \ V is path-connected, there is a path
�1 from �1(1) to x0. We may do this for each �i. Then we have

[�] = [�1] ⇤ [�2] ⇤ [�3] ⇤ · · · ⇤ [�n] = [�1 ⇤ �1] ⇤ [��1
1 ⇤ �2 ⇤ �2] ⇤ · · · ⇤ [��1

n�1 ⇤ �n]
This expresses the loop � as a product of loops in U and loops in V . ⌅

This is a start, but it is not the most convenient formulation. In particular, if we would like to
use this to calculate ⇡1(X), then thinking of the product of ⇡1(U) and ⇡1(V ) inside of ⇡1(X) is
not so helpful. Rather, we would like to express this in terms of some external group defined in
terms of ⇡1(U) and ⇡1(V ). We have homomorphisms

⇡1(U) �! ⇡1(X), ⇡1(V ) �! ⇡1(X),

and we would like to put these together to produce a map from some sort of product of ⇡1(U) and
⇡1(V ) to ⇡1(X). Could this be the direct product ⇡1(U)⇥⇡1(V )? No. Elements of ⇡1(U) commute
with elements of ⇡1(V ) in the product ⇡1(U) ⇥ ⇡1(V ), so this would also be true in the image of
any homomorphism ⇡1(U)⇥ ⇡1(V ) �! ⇡1(X).

What we want instead is a group freely built out of ⇡1(U) and ⇡1(V ). The answer is the free
product ⇡1(U) ⇤ ⇡1(V ) of ⇡1(U) and ⇡1(V ). Its elements are finite length words g1g2g3g4 . . . gn,
where each gi is in either ⇡1(U) or in ⇡1(V ). Really, we use the reduced words, where none of the
gi is allowed to be an identity element and where if gi 2 ⇡1(U) then gi+1 2 ⇡1(V ).

Example 3.2. We have already seen an example of a free product. The free group F2 is the free
product Z ⇤ Z.

Example 3.3. Similarly, the free group F3 on three letters is the free product Z ⇤ Z ⇤ Z.

Example 3.4. Let C2 be the cyclic group of order two. Then the free product C2 ⇤C2 is an infinite
group. If we denote the nonidentity elements of the two copies of C2 by a and b, then elements of
C2 ⇤ C2 look like a, ab, ababa, ababababa, bababa, etc.

Note that there is a homomorphism C2 ⇤ C2 �! C2 that sends both a and b to the nontrivial
element. The kernel of this map is all words of even length. This is the (infinite) subgroup generated
by the word ab (note that ba = (ab)�1). In other words, C2 ⇤C2 is an extension of C2 by the infinite
cyclic group Z. Another way to say this is that C2 ⇤ C2 is a semidirect product of C2 with Z.

The free product has a universal property, which should remind you of the property of the
disjoint union of spaces XqY . First, for any groups H and K, there are inclusion homomorphisms
H �! H ⇤K and K �! H ⇤K.

Proposition 3.5. Suppose that G is any group with homomorphisms 'H : H �! G and
'K : K �! G. Then there is a (unique) homomorphism � : H ⇤ K �! G which restricts to
the given homomorphisms from H and K.
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In other words, the free product is the coproduct in the world of groups.
So Proposition 3.1 can be restated as follows:

Proposition 3.6 (weak van Kampen). Suppose that X = U[V , where U and V are path-connected
open subsets and both contain the basepoint x0. If U \ V is also path-connected, then the natural
homomorphism

� : ⇡1(U) ⇤ ⇡1(V ) �! ⇡1(X)

is surjective.

Fri, Feb. 23

Now that we have a surjective homomorphism to ⇡1(X), the next step is to understand the kernel
N . Indeed, then the First Isomorphism Theorem will tell us that ⇡1(X) ⇠=

�
⇡1(U) ⇤ ⇡1(V )

�
/N .

Here is one way to produce an element of the kernel. Consider a loop ↵ in U \ V . We can then
consider its image ↵U 2 ⇡1(U) and ↵V 2 ⇡1(V ). Certainly these map to the same element of ⇡1(X),
so ↵U↵

�1
V is in the kernel.

Proposition 3.7. With the same assumptions as above, the kernel K of ⇡1(U) ⇤ ⇡1(V ) �! ⇡1(X)
is the normal subgroup N generated by elements of the form ↵U↵

�1
V .

Recall that the normal subgroup generated by the elements ↵U↵
�1
V can be characterized either

as (1) the intersection of all normal subgroups containing the ↵U↵
�1
V or (2) the subgroup generated

by all conjugates g↵U↵
�1
V g�1.

We will put o↵ the proof of Propostion 3.7 for the moment. Assembling these recent results gives
the van Kampen theorem:

Theorem 3.8 (Van Kampen). Suppose that X = U [ V , where U and V are path-connected open
subsets and both contain the basepoint x0. If U \ V is also path-connected, then

⇡1(X,x0) ⇠=
�
⇡1(U, x0) ⇤ ⇡1(V, x0)

�
/N,

where N E ⇡1(U, x0) ⇤ ⇡1(V, x0) is the normal subgroup generated by elements of the form
◆U (↵)◆V (↵)�1, for ↵ 2 ⇡1(U \ V, x0).

There is another, more elegant, way to state the Van Kampen theorem.

Definition 3.9. Suppose given a pair of group homomorphisms 'G : H �! G and 'K : H �! K.
We define the amalgamated free product (or simply amalgamated product) to be the quotient

G ⇤H K = (G ⇤K)/N,

where N EG ⇤K is the normal subgroup generated by elements of the form 'G(h)'K(h)�1.

It is easy to check that the amalgamated free product satisfies the universal property of the pushout
in the category of groups.

Theorem 3.10 (Van Kampen, restated). Let X be given as a union of two open, path-connected
subsets U and V with path-connected intersection U \ V . Then the inclusions of U and V into X
induce an isomorphism

⇡1(U) ⇤⇡1(U\V ) ⇡1(V )
⇠=�! ⇡1(X).

Since the pasting lemma tells us that in this situation, X can itself be written as a pushout, the
Van Kampen theorem can be interpreted as the statement that, under the given assumptions, the
fundamental group construction takes a pushout of spaces to a pushout of groups.

One important special case of this result is when U \ V is simply connected.
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Example 3.11. Take X = S1_S1. Take U to be an open set containing one of the circles, plus an
✏-ball around the basepoint in the other circle, and similarly for V with regard to the other circle.
Then the intersection U \V looks like an ‘X’ and is contractible, and U and V are both equivalent
to S1. We conclude from this that

⇡1(S
1 _ S1) ⇠= ⇡1(S

1) ⇤ ⇡1(S1) ⇠= Z ⇤ Z ⇠= F2.

Example 3.12. Take X = S1 _ S1 _ S1. We can take U to be a neighborhood of S1 _ S1 and V
to be a neighborhood of the remaining S1. Then

⇡1(S
1 _ S1 _ S1) ⇠= (Z ⇤ Z) ⇤ Z ⇠= F3.

Example 3.13. Take X = S1_S2. Take U to be a neighborhood of S1 and V to be a neighborhood
of S2. We conclude from this that

⇡1(S
1 _ S2) ⇠= ⇡1(S

1) ⇤ ⇡1(S2) ⇠= Z.

A natural question now is whether ⇡1(X _Y ) is always the free product of the ⇡1(X) and ⇡1(Y ).
Not quite, but a mild assumption allows us to make the conclusion. Note that in the S1 _ S1

example, we needed to know that the neighborhoods U and V were homotopy equivalent to S1

(and that the intersection was contractible).

Definition 3.14. We say that x0 2 X is a nondegenerate basepoint for X if x0 has a neigh-
borhood U such that x0 is a deformation retract of U .

Proposition 3.15. Let x0 and y0 be nondegenerate basepoints for X and Y , respectively. Then

⇡1(X _ Y ) ⇠= ⇡1(X) ⇤ ⇡1(Y ).

Proof. Suppose that x0 is a deformation retract of the neighborhood NX ✓ X and that y0 is a
deformation retract of the neighborhood NY ✓ Y . Let U = X _ NY and V = NX _ Y . Then
U \V = NX _NY . The retracting homotopies for NX and NY give U ' X, V ' Y , and U \V ' ⇤.
The van Kampen theorem then gives the conclusion. ⌅
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