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Wed, Jan. 10

Here are a list of main topics for this semester:

(1) the fundamental group (topology  algebra) (Hatcher - Ch. 1.1; Lee - Ch. 7, Ch. 8)
(2) the theory of covering spaces (Hatcher - Ch. 1.3; Lee - Ch. 11, Ch. 12)

Example 0.1.
(a) What spaces cover R? Only R itself. Every covering map E −→ R is a homeomorphism.
(b) What spaces cover S1? There is the n-sheeted cover of S1 by itself, for any nonzero

integer n. (Wrap the circle around itself n times.) There is also the exponential map
R −→ S1.

(c) What spaces cover S2? Only S2 itself. Every covering map E −→ S2 is a homeomor-
phism.

Date: May 1, 2018.
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(d) What spaces cover RP2? There is the defining quotient map S2 −→ RP2 and the
homeomorphisms.

(3) computation of the fundamental group via the Seifert-van Kampen theorem. (Hatcher -
Ch. 1.2, Lee - Ch. 9, Ch. 10)

(4) classification of surfaces (compact, connected) and the Euler characteristic. (Lee - Ch. 6,
Ch. 10)

(5) homology of CW complexes (Hatcher - Ch. 2.1, Lee - Ch. 13)

The fundamental group, an algebraic object, will turn out to be crucial for understanding topics
in geometric topology (coverings, surfaces).

? ? ? ? ? ? ??
                 

? ? ? ? ? ? ??

1. The fundamental group - Examples

Our first major result in the course will be the computation of the fundamental group of the
circle. In particular, we will show that it is nontrivial! The argument will involve a number of
new ideas, and one thing I hope you will learn from this course is that computing fundamental
groups is hard!

1.1. The fundamental group of S1. Today, we begin the discussion of the fundamental group of
S1. We will need the following technical result that could have been included in the fall semester.

Proposition 1.1. (Lebesgue number lemma)[Lee, 7.18] Let U be an open cover of a compact metric
space X. Then there is a number δ > 0 such that any subset A ⊆ X of diameter less than δ is
contained in an open set from the cover.

For any n, consider the loop in S1 given by γn(t) = e2πint. For today, we will denote the standard
basepoint of S1, the point (1, 0), by the symbol ?.

Theorem 1.2. The assignment n 7→ γn is an isomorphism of groups

Γ : Z
∼=−→ π1(S1, ?).

Proof. Let’s start by showing that it is a homomorphism. First note that γ0 is the constant path at
1, which is the identity element of the fundamental group. Also, note that γ−n is the path-inverse
of γn. It then remains to show that the path γn · γk is path-homotopic to γn+k when n and k are
non-negative.

For any 0 ≤ c ≤ 1, we can define a path which first traverses γn on the time interval [0, c] and
then traverses γk on the time interval [c, 1]. Any two choices of c gives homotopic paths. The choice
c = 1/2 gives the usual path-composition γn · γk, whereas the choice c = n/(n+ k) gives γn+k.

To show that Γ is also a bijection, we will rely on the exponential map

p :R −→ S1

t 7→ e2πit.

Note that p−1(?) = Z. One important property of this map that we will need is that we can cover
S1, say using the open sets U1 = S1 \ {(1, 0)} and U2 = S1 \ {(−1, 0)}. On each of these open sets
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Ui, the preimage p−1(Ui) is a (countably infinite) disjoint union of subsets Vi,j of R, and p restricts
to a homeomorphism p : Vi,j ∼= Ui.

If f : X −→ S1 is a map from some space X, then by a lift
f̃ : X −→ R we mean simply a map such that p ◦ f̃ = f .

R
p
��

X
f
//

f̃
>>

S1

Fri, Jan. 12

Lemma 1.3. Let γ : I −→ S1 be a loop at ? and let n ∈ Z. Then there is a unique lift γ̃ : I −→ R
such that γ̃(0) = n.

Proof. By the Lebesgue number lemma applied to I, there is a subdivision of I into subintervals
[si, si+1] such that each subinterval is contained in a single γ−1(Ui).

Consider the first such subinterval [0, s1] ⊆ γ−1(U2). Now our
lifting problem simplifies to that on the right. The interval [0, s1]
is connected, so the image of γ̃ must lie in a single component
V1,j . And we have no choice of the component since we have
already decided that γ̃(0) must be n. Call the component V2,0.

qV2, j

p

��
[0, s1] γ

//

γ̃
::

U2

Now our lifting problem reduces to lifting against the homeomorphism p2,0 : V2,0
∼= U2, and we

define our lift on [0, s1] to be the composite p−1
2,0 ◦γ. Now play the same game with the next interval

[s1, s2]. We already have a lift at the point s1, so this forces the choice of component at this stage.
By induction, at each stage we have a unique choice of lift on the subinterval [sk, sk+1]. Piecing
these all together gives the desired lift γ̃ : I −→ R. �

Thus given a loop γ at ?, there is a unique lift γ̃ : I −→ R that starts at 0. The endpoint of the
lift γ̃ must also be in p−1(0) = Z. We claim that the function γ 7→ w(γ) = γ̃(1) is inverse to Γ.
First we must show it is well-defined.

Lemma 1.4. Let h : γ 'p δ be a path-homotopy between loops at ? in S1. Then there is a unique

lift h̃ : I × I −→ R such that h̃(0, 0) = 0.

Proof. We already know about the unique lift γ̃ on I × 0. On 0 × I, the only possible lift is the
constant lift. Now use the Lebesgue number lemma again to subdivide the compact square I × I
so that every subsquare is mapped by γ into one of the Ui. Using the same argument as above, we
get a unique lift on each subsquare, starting from the bottom left square and moving along each
row systematically. �

Note that the lift h̃ is a path-homotopy between the lifts γ̃ and δ̃. This is because h̃(0, t) and

h̃(1, t) are lifts of constant paths. By the uniqueness of lifts, according to Lemma 1.3, the lift of a

constant path must be a constant path. It follows that γ̃(1) = δ̃(1). This shows that the function
w : π1(S1) −→ Z is well-defined.

It remains to show that w is the inverse of Γ.
First note that δn(s) = ns is a path in R starting at 0, and p ◦ δn(s) = e2πi(ns) = γn(s), so δn is

a lift of γn starting at 0. By uniqueness of lifts (Lemma 1.3), δn must be γ̃n. Therefore

w ◦ Γ(n) = w(γn) = γ̃n(1) = δ(1) = n.

It remains to check that
[
Γ(w(γ))

]
= [γ] for any loop γ. Consider lifts ˜Γ(w(γ)) and γ̃. These are

both paths in R starting at 0 and ending at γ̃(1) = w(γ) (this uses that w ◦ Γ(n) = n). But any
3



two such paths are homotopic (use a straight-line homotopy)! Composing that homotopy with the
exponential map p will produce a path-homotopy Γ(w(γ)) 'p γ as desired. �

4



Wed, Jan. 17

Using problem 4 from Homework I, we get the following result.

Corollary 1.5. Let Tn denote the n-torus Tn = S1×S1× · · · ×S1 (n times). Then π1(Tn) ∼= Zn.

Theorem 1.6. (Borsuk-Ulam Theorem) For every continuous map f : S2 −→ R2, there is an
antipodal pair of points {x,−x} ⊂ S2 such that the f(x) = f(−x).

Proof. Suppose not. Then we can define a map g : S2 −→ S1 by

g(x) =
f(x)− f(−x)

‖f(x)− f(−x)‖
.

Then g satisfies g(−x) = −g(x). Let γ : S1 −→ S1 be the restriction to the equator. Note that
since γ extends over the northern (or southern) hemisphere, the loop γ is null. We also write δ for

the composition I −→ S1 γ−→ S1.
The equation g(−z) = −g(z) means that γ(−z) = −γ(z) or δ(t+ 1

2) = −δ(t). Denote by δ̃ a lift

to a path in R. Then δ̃ must satisfy the equation δ̃(t + 1
2) = δ̃(t) + 1

2 + k for some integer k. In
particular, we find that

δ̃(1) = δ̃

(
1

2

)
+

1

2
+ k = δ̃(0) + 1 + 2k.

Thus the degree of γ is the odd integer 1 + 2k. This contradicts that γ is null. �

Application: At any point in time, there are two polar opposite points on Earth having the same
temperature and same barometric pressure. (Or pick any two continuously varying parameters)

Corollary 1.7. The sphere S2 is not homeomorphic to any subspace of R2.

Proof. According to the theorem, there is no continuous injection S2 −→ R2. �

1.2. Fundamental group of spheres. We saw that S1 has a nontrivial fundamental group, but in
contrast we will see that the higher spheres all have trivial fundamental groups. A (path-connected)
space with trivial fundamental group is said to be simply connected.

Theorem 1.8. The n-sphere Sn is simply connected if n ≥ 2.

This follows from the following theorem.

Theorem 1.9. Any continuous map S1 −→ Sn is path-homotopic to one that is not surjective.

Let’s first use this to deduce the statement about n-spheres. Let γ be a loop in Sn. We know
it is path-homotopic to a loop δ that is not surjective. But recall that Sn − {P} ∼= Rn. Thus we
can contract δ using a straight-line homotopy in the complement of any missed point. It remains
to prove the latter theorem.

Proof. There are a number of ways to prove this result. For instance, it is an easy consequence of
“Sard’s Theorem” from differential topology. Here is a proof using once again the Lebesgue number
lemma.

Let {U, V } be the covering of Sn, where U is the upper (open) hemisphere, and V is the comple-
ment of the North pole. Let γ : S1 −→ Sn be a loop. By Lebesgue, we can subdivide the interval
I into finitely many subintervals [si, si+1] such that on each subinterval, γ stays within either U or
V . We will deform γ so that it misses the North pole. On the subintervals that are mapped into
V , nothing needs to be done.

Suppose [si, si+1] is not mapped into V , so that γ passes through the North pole on this segment.
Recall that the open hemisphere U is homeomorphic to Rn. The problem thus reduces to the
following: given a path in Rn, show it is path-homotopic to one not passing through the origin.
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This is simple. First, any path is homotopic to the straight-line path. If that does not pass through
the origin, great. If it does, just wiggle it a little, and it won’t any more. �

Corollary 1.10. The infinite sphere S∞ is simply connected.

Proof. Consider a loop α in S∞. The image of α is then a compact subset of the CW complex
S∞. It follows (see Hatcher, A.1) that the image of α is contained in a finite union of cells. In
other words, the image of α is contained in some Sn. By the above, α is null-homotopic in Sn and
therefore in S∞ as well. �

Fri, Jan. 19

You showed on your homework that S∞ is contractible, and this in fact implies simply connected,
as the next result shows.

Theorem 1.11. Let f : X −→ Y be a homotopy equivalence. Then, for any choice of basepoint
x ∈ X, the induced map

f∗ : π1(X,x)
∼=−→ π1(Y, f(x))

is an isomorphism.

At first glance, this might seem obvious, since we have a quasi-inverse g : Y −→ X to f , and so
we would expect g∗ to be the inverse of f∗. But note that there is no reason that g(f(x)) would be
x again, so g∗ does not even map to the correct group to be the inverse of f∗. We need to employ
some sort of change-of-basepoint to deal with this. So we take a little detour to address this issue.

1.3. Dependence on the basepoint.
Although we often talk about “the fundamental group” of a space X, this group depends on the

choice of basepoint for the loops. One thing at least should be clear: if we want to understand
π1(X,x0), only the path component of x0 in X is relevant. Any other path component can be
ignored. More precisely, if PCx denotes the path-component of a point x, then for any choice of
basepoint x0, we get an isomorphism of groups

π1(PCx0 , x0) ∼= π1(X,x0).

For this reason, we will often assume from now on that our spaces are path-connected.
Under this assumption that X is path-connected, how does the fundamental group depend on

the choice of base point? Suppose that x0 and x1 are points in X. How can we compare loops
based at x0 to loops based at x1? Since X is path-connected, we may choose some path α in X
from x0 to x1. Then we may use the change-of-basepoint technique that we discussed at the end of
the fall semester. If γ is a loop based at x0, we get a loop α · γ · α based at x1. Let us write Φα(γ)
for this loop. The same argument we gave in the case X = S1 generalizes to give

Proposition 1.12.

(1) The operation Φα gives a well-defined operation on homotopy-classes of loops.
(2) The operation Φα only depends on the homotopy-class of α.
(3) The operation Φα induces an isomorphism of groups

Φα : π1(X,x0) ∼= π1(X,x1)

with inverse induced by Φα.

So, as long as X is path-connected, the isomorphism-type of the fundamental group of X does
not depend on the basepoint. For example, once we know that π1(R2,0) = 〈e〉, it follows that the
same would be true with any other choice of basepoint. More generally, we know that any convex
subset of Rn is simply connected.
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Proposition 1.13. Let h be a homotopy between
maps f, g : X ⇒ Y . For a chosen basepoint x0 ∈ X,
define a path α in Y by α(s) = h(x0, s). Then the
diagram to the right commutes.

π1(X,x0)
f∗ //

g∗ ''

π1(Y, f(x0))

Φα∼=
��

π1(Y, g(x0))

Proof. For any loop γ in X based at x0, we want a path-homotopy H : Φα(f ◦ γ) 'p g ◦ γ. For
convenience, let us write y0 = g(x0). For each t, let αt denote the path αt(s) = α(1 − (1 − s)t).
Note that α1 = α and α0 is constant at α(1) = y0.

Then the function
Ht = αt · (ht ◦ γ) · αt

defines a path-homotopy cy0 · g(γ) · cy0 'p α · f(γ) · α = Φα(f(γ)). �

Proof of Theorem 1.11. Let g : Y −→ X be a quasi-inverse to f . Then g ◦ f ' idX , so Prop 1.13
gives us a diagram

π1(X,x0)
id∗
∼=

//

(gf)∗ ''

π1(X,x0)

Φα∼=
��

π1(X, gf(x0))

Now (gf)∗ must be an isomorphism since the other two maps in the diagram are isomorphisms.
Since (gf)∗ = g∗ ◦ f∗, the map f∗ must be injective and similarly g∗ must be surjective.

But now we can swap the roles of f and g, getting a diagram

π1(Y, f(x0))
id∗
∼=
//

(fg)∗ ((

π1(Y, f(x0))

Ψα∼=
��

π1(Y, fgf(x0))

It then follows that g∗ : π1(Y, f(x0)) −→ π1(X, gf(x0)) is injective. Since we already showed it is
surjective, we deduce that it is an isomorphism. Now going back to our first diagram, we get

g∗ ◦ f∗ = Φα, or f∗ = g−1
∗ ◦ Φα,

so that f∗ : π1(X,x0) −→ π1(Y, f(x0)) is an isomorphism. �

So far, we know a number of simply connected spaces (Rn, Sn for n ≥ 2), and we know that
π1(Tn) ∼= Zn for any n ≥ 1. Can there be torsion in the fundamental group? For example, is it
possible that for some nontrivial loop γ in X, winding around the loop twice gives a trivial loop?
The next example will have this property.
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Mon, Jan. 22

1.4. Fundamental group of RP2. Recall that the real projective plane RP2 is defined as the
quotient of S2 by the equivalence relation x ∼ −x. The equivalence classes are precisely the sets
of pairs of antipodal points. Another way to think about this is that each pair of antipodal points
corresponds to a straight line through the origin. We will determine π1(RP2). Today, we’re going
to calculate π1(RP2), but first I want to discuss a result about contractibility of paths.

Proposition 1.14. (1) Let α ∈ π1(X,x0). Then α 'p cx0 if and only if α : S1 −→ X extends
to a map D2 −→ X.

(2) Let α and β be paths in X from x to y. Then α 'p β if and only if the loop α ∗ β is null.

Proof.

(1) (⇒) This follows from Homework II.1.
(⇐) Again using Homework II.1, we may assume given a homotopy h : α ' cx. Since h is
not assumed to be a path-homotopy, the formula γ(s) = h(0, s) defines a possible nontrivai
path. The picture

where h1(s, t) = γ(st) and h3(s, t) = γ(st), defines a path-homotopy H : α 'p γ · cx · γ.
(2) The point is that

α 'p β ⇒ αβ 'p ββ 'p cx
and similarly

αβ 'p cx ⇒ α 'p αββ 'p cxβ 'p β
�

Recall that for S1, the exponential map p : R −→ S1 was key. The analogue of that map for
RP2 will be the quotient map

q : S2 −→ RP2.

Note that in this case, the “fiber” (the preimage of the basepoint) consists of two points. Another
ingredient that was used for S1 was that it has a nice cover. The same is true for RP2: there is a
cover of RP2 by open sets U1, U2, U3 such that each preimage q−1(Ui) is a disjoint union Vi,1qVi,2
such that on each component Vi,j , the map q gives a homeomorphism q : Vi,j ∼= Ui. For instance,
U1 consists of points q(x, y, z) with x 6= 0. Then q−1(U1) is the disjoint union of the left and right
open hemispheres in S2. On each hemisphere H, q restricts to a homeomorphism q : H ∼= U1.

For any point x ∈ q−1(1) = {−1, 1}, we define a loop Γ(x) at 1 in RP2 as follows: take any path
α in S2 from 1 to x. Then Γ(x) = qα is a loop in RP2. Note that this is well-defined because S2

is simply-connected, so that any two paths between 1 and x are homotopic. When x = 1, this
of course gives the class of the constant loop, but when x = −1, this gives a nontrivial loop in RP2.
We claim that this is a bijection. So there is only one nontrivial loop!

To see this, we construct an inverse w : π1(RP2) −→ {−1, 1}. We need some lemmas:

Lemma 1.15. Given any loop in RP2, there is a unique lift to a path in S2 starting at 1.

The proof of this lemma is exactly the same as that of the first lemma in the proof for the
circle.
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Lemma 1.16. Let h : γ 'p δ be a path-homotopy between loops at 1 in RP2. Then there is a

unique lift h̃ : I × I −→ S2 such that h̃(0, 0) = 1.

Again, the proof here is identical to that for the sphere. Let’s see how we can use the lemmas to
define w. Given any loop γ in RP2, there is a unique lift γ̃ in S2 starting at 1. Since it is a lift of
a loop, we must have γ̃(1) ∈ {−1, 1}. So we define w(γ) = γ̃(1). That this is well-defined follows
from the second lemma.

It remains to show that w really is the inverse. Let x ∈ {−1, 1}. Then Γ(x) = q ◦ α for some
path α in S2 from 1 to x. To compute w(Γ(x)), we must find a lift of Γ(x), but we already know
that α is the lift. Thus w(Γ(x)) = α(1) = x.

Similarly, suppose γ is any loop in RP2. Let γ̃ be a lift. Then Γ(w(γ)) = Γ(γ̃(1)) = qα, where α
is any path from 1 to γ̃(1). But of course γ̃ is such a path and γ = qγ̃.

Note that we have given a bijection between π1(RP2) and {−1, 1}, but we have not talked about
a group structure. That’s because we don’t need to: there is only one group of order two! We have
shown that

π1(RP2) ∼= C2.

In fact, the same proof (replacing S2 by Sn) shows that, for n ≥ 2, we have π1(RPn) ∼= C2.

Wed, Jan. 24

1.5. Fundamental group of S1∨S1. We will do one more example before describing the repeated
phenomena we have seen in these examples. First, recall from last semester that given based spaces
(X,x0) and (Y, y0), their wedge sum, or one-point union, is X ∨ Y = X q Y/∼, where x0 ∼ y0.
Today, we want to study the fundamental group of S1 ∨ S1 following the same approach as in the
previous examples. We want to once again find a nice map p : X −→ S1 ∨ S1 for some X. What
we really want is an example of the following:

Definition 1.17. A surjective map p : E −→ B is called a covering map if every b ∈ B has
a neighborhood U such that p−1(U) is a disjoint union p−1(U) = qiVi and such that, for each i,

the map p restricts to a homeomorphism p : Vi
∼=−→ U . We say that the neighborhood U is evenly

covered by p.

Remark 1.18. It is common to assume that E is connected and locally path-connected. We will
assume this from now on, as it simplifies the theory. So as to avoid repeatedly saying (or writing)
“connected and locally path-connected”, I will simply call these spaces very connected.

It is important to note that the neighborhood condition is local in B, not E. This contrasts with
the following definition.

Definition 1.19. A map f : X −→ Y is said to be a local homeomorphism if every x ∈ X has

a neighborhood U such that f(U) ⊆ Y is open and f|U : U
∼=−→ f(U) is a homeomorphism.

Every covering map is a local homeomorphism: given e ∈ E, take an evenly covered neighborhood
U of p(e). Then e is contained in one of the Vj ’s, which is the desired neighborhood . The converse
is not true, as the next example shows.

Example 1.20. Consider the usual exponential map p : R −→ S1, but now restrict it to
(0, 8.123876). This is a local homeomorphism but not a covering map. For instance, the stan-
dard basepoint of S1 has no evenly covered neighborhood under this map.
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Ok, now back to S1 ∨ S1. It is tempting to take X = R since S1 ∨ S1

looks locally like a line, but there is a problem spot at the crossing of the
figure eight. To fix this, we might try to take X to be the union of the
coordinate axes inside of R2. This space is really just R∨R, and so we have
the map p ∨ p : R ∨ R −→ S1 ∨ S1. We want a cover of S1 ∨ S1 which is
nicely compatible with our map from X. Suppose we consider the cover U1,
U2, and U3, where U1 is the complement of the basepoint in one circle, U2 is
the complement of the basepoint in the other, and finally U3 is some small
neighborhood of the basepoint. Well, U1 and U2 are good neighborhoods for
p ∨ p, but U3 is not. The map p ∨ p does not give a homeomorphism from
each component of the preimage of U3 to U3. To fix this, we would want to
add infinitely many cross-sections to each of the axes.

Instead, we take X to be the fractal space given in the picture (see also
page 59 of Hatcher). We define p : X −→ S1 ∨ S1 as follows. On horizontal
segments, use the exponential map to the right branch of S1∨S1. On vertical
segments, use the left branch. Then the cover U1, U2, and U3 from above is
compatible with this new map p, and we see that p is a covering map.

Lemma 1.21. The space X is simply-connected.

Proof. The main point is that any loop in X is compact and therefore contained in a finite union
of edges. Consider the edge furthest from the basepoint that contains part of the loop. The loop is
homotopic to one constant on this furthest edge. This furthest edge is now no longer needed, and
we have a new furthest edge. We can repeat until the loop is completely contracted. �

Let F = p−1(∗) be the fiber. Any point in this fiber may be uniquely described as a “word” in
the letters u, r, d, and l. Define

Γ : F −→ π1(S1 ∨ S1)

as follows: given y ∈ F , let αy be any path in X from the basepoint to y. Then Γ(y) = p ◦ α. It
does not matter which αy we choose since X is simply-connected. We will define an inverse to Γ,
but we now state the needed lemmas in the generality of coverings.

Lemma 1.22. Let p : E −→ B be a covering and suppose p(e) = b. Given any path starting at b
in B, there is a unique lift to a path in E starting at e.

The proof of this lemma is exactly the same as that of Lemma 1.3, for the circle.

Lemma 1.23. Let p : E −→ B be a covering and suppose p(e) = b. Let h : γ 'p δ be a path-

homotopy between paths starting at b in B. Then there is a unique lift h̃ : I × I −→ E such that
h̃(0, 0) = e.

Just as in the previous examples, the above lemmas allow us to define w : π1(S1 ∨ S1) −→ F
by the formula w(γ) = γ̃(1). We will skip the verification that Γ and w are inverse, as this really
follows the same script.

Fri, Jan. 26
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We have established a bijection between π1(S1 ∨ S1) and the set of “words” in the letters u, r,
d, and l. It remains to describe the group structure. For this, we will back up a little.

Definition 1.24. Let p : E −→ B and q : E′ −→ B be covers of a space B. A map of covers
from E to E′ is simply a map of spaces ϕ : E −→ E′ such that q ◦ f = p. These are also sometimes
called covering homomorphisms.

The special case in which the two covers are the same cover and f is a homeomorphism is referred
to as a deck transformation. We write Aut(E) for the set of all deck transformations of E. This
is a group under composition.

Keeping our notation from earlier, let b ∈ B be a basepoint and write F = p−1(b) for the fiber.
Note that any deck transformation ϕ : E −→ E must take F to F . Let us pick a basepoint e for
E. Since we want the covering map q to be based, this means that e lies in the fiber F . We may
now define a map A : Aut(E) −→ F by A(ϕ) = ϕ(e).

Theorem 1.25. Let p : X −→ B be a covering such that X is simply connected. Then the
map A : Aut(X) −→ F is a bijection and the composition Γ ◦ A is an isomorphism of groups
Aut(X) ∼= π1(B).

Proof. Let us first show that A is injective. Thus let ϕ1 and ϕ2 be deck transformations which
agree at e. Let x ∈ X be any point and let α be any path in X from e to x. Then the paths ϕ1 ◦α
and ϕ2 ◦ α are both lifts of p ◦ α starting at the common point ϕ1(e) = ϕ2(e). By the uniqueness
of lifts, these must be the same path. It follows that their endpoints, ϕ1(x) and ϕ2(x) agree.

It remains to show that A is surjective. Let f ∈ F be any point in the fiber. We wish to produce
a deck transformation ϕ : X −→ X such that ϕ(e) = f . We build the map ϕ locally and patch
together. Let x ∈ X and pick any path α : e  x. Then pα is a path in B starting at b and
ending at px. By the path-lifting lemma, there is a unique lift p̃α in X starting at f . We define
ϕ(x) = p̃α(1). From this definition, continuity is not at all clear. But the point is that since
p is a covering, we can choose an evenly-covered neighborhood U of p(x). Let V be the slice of
p−1(U) containing x and V ′ the slice containing ϕ(x) = p̃α(1). Then the restriction of ϕ to V is
the composition of homeomorphisms

V
p−→ U

p←− V ′.
By the local criterion for continuity (Prop 2.19 in Lee), it follows that ϕ is continuous.

By construction, ϕ will be a map of covers, as long as we can verify that it is well-defined. But
if δ : e  x is another choice of path, we know that α 'p δ because X is simply-connected. It

follows that pα 'p pδ, and by lifting the path-homotopy, it follows that p̃α 'p p̃δ, so that their
right endpoints agree.

We will finish the proof next time.

11



Mon, Jan. 29

So given f ∈ F , we have built a map of covers ϕ : X −→ X, but we wanted this to be an
isomorphism. From the construction of ϕ, we see that it is a local homeomorphism, which implies
that it is open. Suppose ϕ(x1) = ϕ(x2). Note that since ϕ is a map of covers, this implies that
x1 and x2 are in the same fiber. Let α1 : e  x1 and α2 : e  x2 be paths. By hypothesis, p̃α1

and p̃α2 have the same endpoints. Since X is simply-connected, we know that p̃α1 'p p̃α2. It
follows that pα1 'p pα2, and it then follows, by lifting the homotopy, that α1 'p α2. In particular,
α1(1) = α2(1), so x1 = x2. This shows that ϕ is injective.

To see that ϕ is surjective, let x ∈ X. We can then pick a path γ : f  x. Then pγ is a path in
B from b to p(x), which lifts uniquely to a path γ̃ from e to some point x′. But then ϕ(x′) = x by
the definition of ϕ.

We have now established that

A : Aut(X) −→ F

is a bijection. We also wanted to show that the resulting bijection Γ ◦ A : Aut(X) −→ π1(B) is a
group isomorphism. It remains only to show that this is a group homomorphism.

Let ϕ1, ϕ2 ∈ Aut(X). Recall that Γ(A(ϕ1)) is defined as follows: pick any path α1 in X from e to
f1 = ϕ1(e). Then Γ(A(ϕ1)) = p ◦ α1. Similarly Γ(A(ϕ2)) = p ◦ α2. Now A(ϕ2 ◦ ϕ1) = ϕ2 ◦ ϕ1(e) =
ϕ2(f1). To compute Γ of this point, we need a path in X from e to ϕ2(f1). But α2 ∗ϕ2(α1) is such
a path. Then

Γ(A(ϕ2 ◦ ϕ1)) = Γ(ϕ2(f1)) = p ◦ (α2 ∗ ϕ2(α1)) = (p ◦ α2) ∗ (p ◦ ϕ2 ◦ α1)

= (p ◦ α2) ∗ (p ◦ α1) = Γ(A(ϕ2)) ∗ Γ(A(ϕ1)).

�

Returning now to our example X −→ S1 ∨ S1, we have identified π1(S1 ∨ S1) with the group of
deck transformations X ∼= X, and we know we have one such deck transformation for each point
in the fiber F . Any transformation can be thought of as a sequence of horizontal and vertical
“moves”. Writing u for an upwards shift and r for a shift to the right, any element of the group
can be described by a seqence of u’s, r’s, and their inverses.

Definition 1.26. A word in letters u, r, and their inverses is simply a sequence of these letters.
We say the word is reduced if no u−1 is adjacent to a u, and similarly for the r’s. The free group
F2 or F (u, r) on the letters u and r is the set of reduced (including empty) words, where the group
operation is concatenation. The inverse of any word is the same word in reversed order and with
the sign of each letter reversed.

We have shown that π1(S1 ∨ S1) is the free group on two letters. In particular, this is our first
example of a nonabelian fundamental group.

Wed, Jan. 31

2. The theory of covering spaces

2.1. Lifting Lemmas. So far, the only kind of coverings we have studied have been those in
which the covering space is simply connected. Now we will relax this condition and discuss the
more general theory.

Proposition 2.1. Let p : E −→ B be a covering. Then the induced map p∗ : π1(E) −→ π1(B) is
injective.
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Proof. Let γ ∈ π1(E) and suppose p∗(γ) = 0. In other words, the loop p ◦ γ in B is null. Let

h : I × I −→ B be a null-homotopy. Then this lifts to a homotopy h̃ : I × I −→ E from γ (the
unique lift of p ◦ γ) to a lift c̃ of the constant loop. Since the constant loop at e is a lift of the

constant loop at b, uniqueness of lifts implies that c̃ is the constant loop. So h̃ is a null-homotopy
for γ. �

Example 2.2. The only example of a covering we have discussed thus far in which the covering
space is not simply connected is the n-fold cover S1 −→ S1. In this case, the cover sends the
generator of π1(S1) ∼= Z to n times the generator, and the image of p∗ is the subgroup nZ < Z.

Given the above result, any covering of B gives rise to a subgroup of π1(B). One might wonder
what subgroups can arise in this way. We will see that, under mild hypotheses on B, every subgroup
arises in this way.

Previously, we have studied lifting paths and path-homotopies against a covering. We can also
generalize this to consider lifting arbitrary maps f : Z −→ B. As in Remark 1.18, whenever we
discuss a covering map E −→ B, we assume that E is “very connected”, which implies the same
for B. In particular, this is assumed for the following results.

Proposition 2.3. (Homotopy lifting) Let Z be a locally connected space. Let p : E −→ B be a

covering and h : Z × I −→ B be a homotopy between maps f, g : Z ⇒ B. Let f̃ be a lift of f . Then
there is a unique lift of h to h̃ with h̃0 = f̃ .

Proposition 2.4. (Unique lifting) Let p : E −→ B be a covering and f : Z −→ B a map, with Z

connected. If f̃ and f̂ are both lifts of f that agree at some point of Z, then they are the same lift.

Note that in the second result, we are not asserting that a lift exists! See Theorems 8.3 and 8.4
of [Lee] for complete proofs.

Here is a sketch of Proposition 2.4.
Sketch. The idea is to show that the subset of Z on which the lifts agree is both open and closed;

it is already given to be nonempty. For any z ∈ Z, pick an evenly-covered neighborhood U of f(z).

On the one hand, suppose f̃(z) = f̂(z). Then let V be the component of p−1(U) containing this

point. Then f̃−1(V ) ∩ f̂−1(V ) is a neighborhood of z on which the lifts agree (since q : V −→ U is
a homeomorphism).

On the other hand, if f̃(z) 6= f̂(z), then let Ṽ and V̂ be the components of f̃(z) and f̂(z) in

p−1(U). It follows that f̃−1(Ṽ ) ∩ f̂−1(V̂ ) is a neighborhood of z on which f̃ and f̂ disagree (they
land in different components of p−1(U)). �

Fri, Feb. 2

The interesting, new result here concerns the existence of lifts.

Proposition 2.5. (Lifting Criterion) Let p : E −→ B be a covering and let f : Z −→ B, with Z

very connected. Given points z0 ∈ Z and e0 ∈ E with f(z0) = p(e0), there is a lift f̃ with f̃(z0) = e0

if and only if f∗(π1(Z, z0)) ⊆ p∗(π1(E, e0)).

Proof. (⇒) Since f = p ◦ f̃ , we have f∗ = p∗ ◦ f̃∗.
(⇐) Here is the more interesting direction. Suppose that f∗(π1(Z, z0)) ⊆ p∗(π1(E, e0)). Let

z ∈ Z. We wish to define f̃(z). Pick any path α in Z from z0 to z. Then f ◦ α is a path in B,

which therefore lifts uniquely to a path α̃ in E starting at, say e0. We define f̃(z) = α̃(1). Then f̃
is a lift of f .

Why is the lift f̃ well-defined? Suppose β is another path in Z from z0 to z. Then f ◦ (α · β) is
a loop in B at b0 = f(z0). By assumption, this means that for some loop δ in E, we have

p ◦ δ 'p f ◦ (α · β) = f(α) · f(β)
13



in B. Since path-composition behaves well with respect to path-homotopy, we have a path-
homotopy

h : (p ◦ δ) · f(β) 'p f(α)

of paths in B. Note that the path (p ◦ δ) · f(β) lifts to the path δ · β̃. The homotopy h then lifts
(uniquely) to a path-homotopy in E

h̃ : δ · β̃ 'p α̃.
In particular, these have the same endpoints. Of course, the endpoint of δ · β̃ is simply the endpoint
of β̃. It follows that f̃ is well-defined at z.

Just for emphasis, let’s go through the proof that f̃ is continuous. Let z ∈ Z and let U be
an evenly covered neighborhood U of f(z), and let V be the component of p−1(U) containing the

lift f̃(z). Let W ⊆ Z be the path-component of f−1(U) containing z. Since Z is locally path-

connected, W is open. Moreover, since W is path-connected and f̃(W ) ∩ V 6= ∅, we must have

f̃(W ) ⊆ V . Then on the neighborhood W of z, the lift f̃ may be described as the composition

p|−1
V ◦ f . It follows that f̃ is continuous on the neighborhood W of z. Since z was arbitrary, f̃ is

continuous. �

This implies what we already know: S1 is not a retract of R. More generally, and less trivially,
we have that the identity map S1 −→ S1 does not lift against the n-fold cover pn : S1 −→ S1. Even
more generally, we might ask about lifting some pk : S1 −→ S1 against the cover pn : S1 −→ S1.
By the result above, this happens if and only if kZ ⊆ nZ. In other words, this happens if and only
if n | k.

More interestingly, we have

Corollary 2.6. Suppose that the covering space E is simply-connected. Then a map f : Z −→ B
lifts to some f̃ : Z −→ E if and only if f induces the trivial map on fundamental groups.

Corollary 2.7. Suppose that Z is simply-connected and p : E −→ B is a covering map. Then any
map f : Z −→ B lifts against p.

Thus if X −→ B is a simply connected covering and E −→ B is any covering, we automatically
get a map of covers X −→ E. For this reason, simply connected covers are referred to as universal
covers.

14



Mon, Feb. 5

Proposition 2.8. Suppose that ϕ : E1 −→ E2 is a map of covers. Then ϕ is a covering map.

Proof. We start by showing that ϕ is surjective. Let e ∈ E2. Let b = p2(e), and pick any e′ ∈ p−1
1 (b).

Since E2 is very connected, we can find a path α : ϕ(e′) e in E2. We can push this path α down
to a loop p2α in B and then lift this uniquely to a path α̃ in E1 starting at e′. Now ϕ(α̃) is a lift
of p2α in E2 starting at ϕ(e′), so by uniqueness of lifts, we must have ϕ(α̃) = α. In particular,
ϕ(α̃(1)) = e.

Now we show that e has an evenly-covered neighborhood of e. We know that the point p2(e) ∈
B has an evenly covered neighborhood U2 (with respect to p2). Let U1 be an evenly covered
neighborhood, with respect to p1, of p2(e). Write U for the component of U1 ∩U2 containing p2(e).
Then p−1

2 (U) ∼= qVi. Let V0 be the component containing e. Write p−1
1 (U) ∼= qWj . Then, since U

is connected, each Vi and Wj must be connected. It follows that

ϕ takes each Wj into a single Vi, so that ϕ−1(V0) ⊆ p−1
1 (U) is a

disjoint union of some of the Wj ’s, and it follows that ϕ restricts to
a homeomorphism on each component because both p1 and p2 do so.

�

It follows that any universal cover X −→ B covers every other covering E −→ B.

Remark 2.9. Recall that in the proof of Theorem 1.25, we ended up building a map of covers
ϕ : X −→ X corresponding to any point in the fiber F , but we wanted to know it was in fact
a homeomorphism. Prop 2.8 now gives us that it is a covering map, so that according to the
homework, it suffices to show that the ϕ we constructed was injective. This can be seen by verifying
that it is injective on each fiber.

2.2. The monodromy action. Our next goal is to completely understand the possible covers of a
given space B. There are two avenues of approach. On the one hand, Prop. 2.1 tells us that covering
spaces give rise to subgroups of π1(B), so we can try to understand the collection of subgroups.
Another approach, which we will look at next, focuses on the fiber F = p−1(b0).

It will be convenient in what follows to write G = π1(B, b0) and F = p−1(b0) ⊂ E. Given a loop
γ based at b0 and a point f ∈ F , we will write γ̃f for the lift of γ which starts at f .

Theorem 2.10. Let p : E −→ B be a covering and let F = p−1(b) be the fiber over the basepoint.
Then the function

a : F × π1(B) −→ F, (f, [γ]) 7→ γ̃f (1)

specifies a transitive right action of π1(B) on the fiber F . This is called the monodromy action.

Proof. Recall that we have already showed this to be well-defined.
Let cb0 be the constant loop at b0. Then the constant loop cf at f in E is a lift of cb0 starting

at f , so by uniqueness it must be the only lift. Thus f · [cb0 ] = f .
Now let α and β be loops at b. We wish to show that (f · α) · β = f · (α · β). Let f2 = α̃f (1).

Then α̃f · β̃f2 is a (= the) lift of α · β starting at f , so

f · (α · β) = α̃f · β̃f2(1).
15



On the other hand, f · α = α̃f (1) = f2, so

(f · α) · β = f2 · β = β̃f2(1)

Finally, to see that this action is transitive, let f1 and f2 be points in the fiber F . Let γ be a path
in E from f1 to f2. Then α = p ◦ γ is a loop at b0. Furthermore α̃f1 = γ, so f1 ·α = γ(1) = f2. �

Note that if we instead wrote path-composition in the “correct” order (i.e. in the same order as
function composition), this would give a left action of π1(B) on F .

By the Orbit-Stabilizer theorem, since G acts transitively on F , there is an isomorphism of right
G-sets F ∼= Ge0\G, where Ge0 ≤ G is the stabilizer of e0.

Wed, Feb. 7

Proposition 2.11. The stabilizer of e ∈ F under the monodromy action is the subgroup
p∗(π1(E, e)) ≤ π1(B, b0).

Proof. Let [γ] ∈ π1(E, e). Then γ is a lift of p ◦ γ starting at e, so e · p∗(γ) = γ(1) = e. Thus p∗(γ)
stabilizes e.

On the other hand, let [α] ∈ π1(B, b0) and suppose that e · [α] = e. This means that α lifts to a
loop α̃ in E. Thus α = p ◦ α̃ and [α] ∈ p∗(π1(E, e)). �

Corollary 2.12. Let p : E −→ B be a covering. Then, writing H = p∗(π1(E, e)) the map

H\π1(B, b)
∼=−→ F.

H γ 7→ f · γ

is an identification of right π1(B)-sets

We have seen that any covering gives rise to a transitive G-set. We would also like to understand
maps of coverings.

Definition 2.13. Let X and Y be (right) G-sets. A function f : X −→ Y is said to be G-
equivariant (or a map of G-sets) if f(xg) = f(x) · g for all x.

Proposition 2.14. Let ϕ : E1 −→ E2 be a map of covers of B. The induced map on fibers
F1 −→ F2 is π1(B)-equivariant.

Proof. Let [γ] ∈ π1(B) and f ∈ F1. We have f · [γ] = γ̃f (1), where γ̃f is the lift of γ starting at
f . Similarly, we have ϕ(f) · [γ] = γ̃ϕ(f)(1). But ϕ(γ̃) is a lift of γ starting at ϕ(γ(0)) = ϕ(f), so
γ̃ϕ(f) = ϕ(γ̃f ). Thus

ϕ(f) · [γ] = γ̃ϕ(f)(1) = ϕ(γ̃f )(1) = ϕ(γ̃f (1)) = ϕ(f · [γ]).

�

Proposition 2.15. Let H,K ≤ G. Then every G-equivariant map ϕ : H\G −→ K\G is of the
form Hg 7→ Kγg for some γ ∈ G satisfying γHγ−1 ≤ K.

Proof. Since H\G is a transitive G-set, an equivariant map out of it is determined by the value at
any point. Suppose we stipulate

He 7→ Kγ.

Then equivariance would force

Hg 7→ Kγg.

Is this well-defined? Since Hg = Hhg for any h ∈ H, we would need Kγg = Kγhg. Multiplying
by g−1γ−1 gives K = Kγhγ−1. Since h ∈ H is arbitrary, this says that γHγ−1 ≤ K. �
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Corollary 2.16. A G-equivariant map ϕ : H\G −→ K\G exists if and only if H is conjugate in G
to a subgroup of K. The two orbits are isomorphic (as right G-sets) if and only if H is conjugate
to K.

Notation. Given covers (E1, p1) and (E2, p2) of B, we denote by MapB(E1, E2) the set of cov-
ering homomorphisms ϕ : E1 −→ E2. Given two right G-sets X and Y , we denote by HomG(X,Y )
the set of G-equivariant maps X −→ Y .

The following theorem classifies covering homomorphisms.

Theorem 2.17. Let E1 and E2 be coverings of B. Then Proposition 2.14 induces a bijection

MapB(E1, E2)
∼=−→ HomG(F1, F2).

Proof. The key is that a covering homomorphism is a lift in the diagram to
the right. Uniqueness of lifts gives injectivity in the theorem. For surjectiv-
ity, we use the lifting criterion Prop 2.5. Thus suppose given a G-equivariant
map λ : F1 −→ F2 and fix a point e1 ∈ F1. Let e2 = λ(e1) ∈ F2. The lifting
criterion will provide a lift if we can verify that

(p1)∗(π1(E1, e1)) ≤ (p2)∗(π1(E2, e2)).

But remember that according to Prop 2.11, these are precisely the stabilizers
of e1 and e2, respectively. Writing H1 and H2 for these groups, the map
λ : F1 −→ F2 corresponds to a map

λ̂ : H1\G −→ H2\G.

According to Prop 2.15, this means that γH1γ
−1 ≤ H2, where λ̂(H1e) =

H2γ. The fact that λ(e1) = e2 means that γ = e. So H1 ≤ H2 as desired. �

E2

p2
��

E1 p1
//

ϕ
>>

B

Corollary 2.18. If E is a cover of B, then we have group isomorphisms

AutB(E) ∼= AutG(H\G,H\G) ∼= NG(H)/H,

where NG(H) is the normalizer of H in G, consisting of those elements of G which conjugate H
to itself.

Proof. Theorem 2.17 gives the first bijection. By Corollary 2.15, we have a surjective group ho-
momorphism NG(H) −→ AutG(H\G,H\G), and it remains only to identify the kernel. But
γ ∈ NG(H) lies in the kernel if Hg 7→ Hγg is the identity map of H\G, which happens just if
γ ∈ H. So we conclude that the kernel is H. �

The quotient group NG(H)/H is known as the Weyl group of H in G and is sometimes denoted
WG(H).

Fri, Feb. 9

2.3. The classification of covers. We have almost shown that working with covers of B is the
same as working with transitive right G-sets (technically, we are heading to an “equivalence of
categories”). All that is left is to show that for every G-orbit F , there is a cover p : E −→ B whose
fiber is F as a G-set.

We assume that B has a universal cover q : X −→ B. Recall that we showed in Theorem 1.25
that the group of deck transformations of X is isomorphic to G.

Proposition 2.19. The (left) action of G on X via deck transformations is free and properly
discontinuous.
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Proof. Let x ∈ X and suppose gx = x for some g ∈ G. Recall that here g is a covering homomor-
phism X −→ X and thus a lift of q : X −→ B. By the uniqueness of lifts, since g looks like the
identity at the point x, it must be the identity. This shows the action is free.

Again, let x ∈ X. We want to find a neighborhood V of x such that only finitely many translates
gV meet V . Consider b = q(x). Let U be an evenly-covered neighborhood of b. Then q−1(U) ∼=∐
Vi, and x ∈ V j for some j. Recall that G freely permutes the pancakes Vi. In particular, the

only translate of Vj that meets Vj is the identity translate eVj . �

According to Homework IV.2, this means that the quotient map X −→ G\X is a cover. Actually,

the cover X
q−→ B factors through a homeomorphism G\X ∼= B. If we consider the action of a

subgroup H ≤ G, it is still free and properly discontinuous. So we get a covering

qH : X −→ H\X = XH

for every H. Moreover, the universal property of quotients gives an induced map

pH : H\X −→ B.

Proposition 2.20. The map pH : H\X −→ B is a covering map, and the fiber F is isomorphic
to H\G as a G-set.

Proof. Let b ∈ B. Then we have a neighborhood U which is evenly-covered by q. Recall again that
the G-action, and therefore also the H-action, simply permutes the pancakes in p−1(U). We thus
get an action of H on the indexing set I for the pancakes in p−1(U). If we write Wi = qH(Vi), we
thus have the diagram

q−1(U)
qH // // p−1

H (U)
pH // // U

∐
i∈I

Vi

∼=

OO

//
∐

j∈H\I

Wj
//

∼=

OO

U

To see that the restriction of pH to a single Wj gives a homeomorphism, we use the fact that
qH : Vj −→ Wj is a homeomorphism, since qH : X −→ XH is a covering, and that q : Vj −→ U is

a homeomorphism. It follows that pH = q ◦ q−1
H is a homeomorphism.

For the identification of the fiber F ⊆ XH , notice that the H-action on X acts on each fiber
separately, and the quotient of this action on the fiber of X gives precisely H\G. �

Example 2.21. Suppose that G = Σ3, the symmet-
ric group on 3 letters, and let H = {e, (12)} ≤ G. If
we take an evenly-covered neighborhood U in B, then
the situation described in the proof above is given in
the picture to the right.
As an aside, note that XH here is an example of a
covering in which the deck transformations do not act
transitively on the fibers.

To sum up, we have shown that if B has a universal cover, then the assignment (E, p) 7→ F gives
an “equivalence of categories” between coverings of B (CovB) and G-orbits (OrbG).
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Mon, Feb. 12

We can form a category CovB whose objects are the covers of B and whose morphisms are the
maps of covers. We can also form a category OrbG whose objects are the transitive (right) G-sets.
Our recent discussion has shown that the assignment (technically ’functor’)

CovB −→ OrbG, (E, p) 7→ F := p−1(b0)

is an equivalence of categories. This means that

(1) (fully faithful) We have a bijection CovB(E,E′) ∼= OrbG(F, F ′)
(2) (essentially surjective) Every G-orbit arises in this way, meaning that any G-orbit is iso-

morphic to p−1(b0) for some cover of B.

One consequence of having an equivalence of categories is that this produces a bijection between
isomorphism classes of objects.

Corollary 2.22. The fiber functor CovB −→ OrbG induces a bijection

{isomorphism classes of covers} ∼= {isomorphism classes of orbits}
∼= {conjugacy classes of subgroups of G }

Note that there is no obvious choice of functor in the other direction. Given a G-orbit X, picking
a point in the orbit produces an isomorphism to some H\G, and then Proposition 2.20 produces a
cover whose fiber is isomorphic to X. But this really does involve making a choice. This is a pretty
typical situation: a functor that is essentially surjective and fully faithful is called an equivalence
of categories, but to produce a functor that looks like an inverse, choices need to be made.

2.4. Existence of universal covers. The last result we need to tie this story together is the
existence of universal covers.

Definition 2.23. Let B be any space. A subset U ⊆ B is relatively simply connected (in B)
if every loop in U is contractible in B. We say that B is semilocally simply connected if every
point has a relatively simply connected neighborhood.

Remark 2.24. Note that if B is very connected and semilocally simply connected, then every
point has a path-connected, relatively simply connected neighborhood. This is because if b inU is
relatively simply connected, then the path component of b in U is open (B is locally path-connected)
and also relatively simply-connected (true of any subset of a relatively simply connected subset).

Theorem 2.25. Let B be very connected. Then there exists a universal cover X −→ B if and only
if B is semilocally simply connected.

♥♥♥ Wed, Feb. 14 ♥♥♥

Proof. The forward implication is left as an exercise. For convenience, we fix a basepoint b0 ∈ B.
We start by working backwards. That is, suppose that q : X −→ B exists. Given a point b ∈ B,

what can we say about the fiber q−1(b)? Pick a basepoint x0 ∈ q−1(b0). Then, for each f ∈ q−1(b),
we get a (unique) path-homotopy class of paths α : x0  f . Composing with the covering map q
gives a (unique) path-homotopy class of paths q ◦ α : b0  b. This now gives a description of the
fiber q−1(b) purely in terms of B.

We now take this as a starting point. As a set, we take X to be the set of path-homotopy classes
of paths starting at b0. The map q : X −→ B takes a class [γ] to the endpoint γ(1). It remains to
(1) topologize X, (2) show that q is a covering map, and (3) show that X is simply-connected.

We specify the topology on X by giving a basis. Let γ be a path in B starting at b0. Let U
be any path-connected, relatively simply-connected neighborhood of the endpoint γ(1). Define a
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subset U [γ] ⊆ X to be the set of equivalence classes of paths of the form [γδ], where δ : I −→ U is
a path in U . These cover X since each [γ] is contained in some U [γ] by Remark 2.24. Now suppose
that γ ∈ U1[γ1]∩U2[γ2]. Then the path-component of γ(1) in U1 ∩U2 is again path-connected and
relatively simply connected. Thus

γ ∈ U [γ] ⊆ U1[γ1] ∩ U2[γ2].

We have shown that the U [γ] give a basis for a topology on X.
Next, we show that q is continous. Let V ⊆ B be open and let q([γ]) ∈ V , so that γ(1) ∈ V .

Then we can find a path-connected, relatively simply connected U satisfying γ(1) ∈ U ⊆ V . So
U [γ] is a neighborhood of [γ] in q−1(V ), as desired.

Since B is path-connected, it follows that q is surjective. Let b ∈ B and let b ∈ U be a path-
connected, relatively simply-connected neighborhood. We claim that U is evenly covered by q.
First, we claim that

q−1(U) =
⋃

[γ]∈q−1(b)

U [γ].

It is clear that the RHS is contained in the LHS. Suppose that q([α]) ⊆ U . Then α(1) ∈ U and we
may pick a path δ : α(1) b in U . Then α ∈ U [αδ].

(This will be continued on Monday . . . ) �

Fri, Feb. 16

Exam day!!
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Mon, Feb. 19

Proof. (Continued . . . ) Finally, we wish to show that this is a disjoint union. By the definition of
the topology on X, each U [γ] is open. Thus suppose that [α] ∈ U [γ1] ∩ U [γ2]. This means that

[α] = [γ1δ1] = [γ2δ2].

In other words,
[γ1δ1δ2] = [γ2].

Since U is relatively simply-connected, this implies that [γ1] = [γ2]. So any two overlapping U [γ]
are in fact the same. To finish the proof that q is a covering, we need to show that q restricts to a

homeomorphism q : U [γ]
∼=−→ U . Surjectivity follows from the assumption that U is path-connected.

Injectivity is the relatively simply-connected hypothesis. Finally, q takes any basis V [λ] to the open
set V (since V is path-connected), so it is open. We have shown that q is a covering map.

The final step is to show that X is very connected and simply connected. Since X is locally
homeomorphic to B and B is locally path-connected, it follows that the same is true of X. Next,
we show that X is path-connected (and therefore connected). Let [γ] ∈ X. We define a path h
in X from the constant path [cb0 ] to [γ] by h(s) = [γ|[0,s]]. In the interest of time, we skip the
verification that h is continuous (but see Lee, proof of Theorem 11.43).

To see that X is simply connected, let Γ be a loop in X at the basepoint [cb0 ]. Write γ = q ◦ Γ.
Then Γ is a lift of γ, but so is the loop s 7→ [γ[0,s]]. By uniqueness of lifts, [Γ(s)] = [γ[0,s]]. Then,
since Γ is a loop, we have

[γ] = [γ[0,1]] = [Γ(1)] = [Γ(0)] = [γ[0,0]] = [cb0 ].

In other words, γ is null. Since q is a covering, this implies that Γ is null as well. �

We have shown that if a space is semilocally simply-connected, then it has a universal cover.
So to provide an example of a space without a universal cover, it suffices to give an example of a
space with a point which has no relatively simply connected neighborhood.

Example 2.26 (The Hawaiian earring). Let Cn ⊆ R2 be the circle of radius 1/n centered at
(1/n, 0). So each such circle is tangent to the y-axis at the origin. Let C = ∪nCn. We claim that
the origin has no relatively simply connected neighborhood. Indeed, let U be any neighborhood
of the origin. Then for large enough n, the circle Cn is contained in U . A loop α that goes once
around the circle Cn is not contractible in C. To see this, note that the map rn : C −→ S1 which
collapses every circle except for Cn is a retraction. The loop r ◦ α is not null, so α can’t be null.

This example looks like an infinite wedge of circles, but it is not just a wedge. For instance, in
each Cn consider an open interval Un of radian length 1/n centered at the origin (or the open left
semicircle, if you prefer). The union U = ∪nUn of the Un’s is open in the infinite wedge of circles
but not in C, since no ε-neighborhood of the origin is contained in U .

Wed, Feb. 21

3. The van Kampen Theorem

The focus of the next unit of the course will be on computation of fundamental groups.
One example we have already studied is the fundamental group of S1 ∨ S1. We saw that this is

the free group on two generators. We will see similarly that the fundamental group of S1 ∨S1 ∨S1

is a free group on three generators. We will also want to compute the fundamental group of the
two-holed torus (genus two surface), the Klein bottle, and more.

The main idea will be to decompose a space X into smaller pieces whose fundamental groups are
easier to understand. For instance, if X = U ∪V and we understand π1(U), π1(V ), and π1(U ∩V ),
we might hope to recover π1(X).
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Proposition 3.1. Suppose that X = U ∪ V , were U and V are path-connected open subsets and
both contain the basepoint x0. If U ∩V is also path-connected, then the smallest subgroup of π1(X)
containing the images of both π1(U) and π1(V ) is π1(X) itself.

In group theory, we would say π1(X) = π1(U)π1(V ).
Note that we really do need the assumption that U ∩ V is path-connected. If we consider U

and V to be open arcs that together cover S1, then both U and V are simply-connected, but their
intersection is not path-connected. Note that here that the product of two trivial subgroups is not
π1(S1) ∼= Z!

Proof. Let γ : I −→ X be a loop at x0. By the Lebesgue number lemma, we can subdivide the
interval I into smaller intervals [si, si+1] such that each subinterval is taken by γ into either U or
V . We write γ1 for the restriction of γ to the first subinterval. Suppose, for the sake of argument,
that γ1 is a path in U and that γ2 is a path in V . Since U ∩ V is path-connected, there is a path
δ1 from γ1(1) to x0. We may do this for each γi. Then we have

[γ] = [γ1] ∗ [γ2] ∗ [γ3] ∗ · · · ∗ [γn] = [γ1 ∗ δ1] ∗ [δ−1
1 ∗ γ2 ∗ δ2] ∗ · · · ∗ [δ−1

n−1 ∗ γn]

This expresses the loop γ as a product of loops in U and loops in V . �

This is a start, but it is not the most convenient formulation. In particular, if we would like to
use this to calculate π1(X), then thinking of the product of π1(U) and π1(V ) inside of π1(X) is
not so helpful. Rather, we would like to express this in terms of some external group defined in
terms of π1(U) and π1(V ). We have homomorphisms

π1(U) −→ π1(X), π1(V ) −→ π1(X),

and we would like to put these together to produce a map from some sort of product of π1(U) and
π1(V ) to π1(X). Could this be the direct product π1(U)×π1(V )? No. Elements of π1(U) commute
with elements of π1(V ) in the product π1(U) × π1(V ), so this would also be true in the image of
any homomorphism π1(U)× π1(V ) −→ π1(X).

What we want instead is a group freely built out of π1(U) and π1(V ). The answer is the free
product π1(U) ∗ π1(V ) of π1(U) and π1(V ). Its elements are finite length words g1g2g3g4 . . . gn,
where each gi is in either π1(U) or in π1(V ). Really, we use the reduced words, where none of the
gi is allowed to be an identity element and where if gi ∈ π1(U) then gi+1 ∈ π1(V ).

Example 3.2. We have already seen an example of a free product. The free group F2 is the free
product Z ∗ Z.

Example 3.3. Similarly, the free group F3 on three letters is the free product Z ∗ Z ∗ Z.

Example 3.4. Let C2 be the cyclic group of order two. Then the free product C2 ∗C2 is an infinite
group. If we denote the nonidentity elements of the two copies of C2 by a and b, then elements of
C2 ∗ C2 look like a, ab, ababa, ababababa, bababa, etc.

Note that there is a homomorphism C2 ∗ C2 −→ C2 that sends both a and b to the nontrivial
element. The kernel of this map is all words of even length. This is the (infinite) subgroup generated
by the word ab (note that ba = (ab)−1). In other words, C2 ∗C2 is an extension of C2 by the infinite
cyclic group Z. Another way to say this is that C2 ∗ C2 is a semidirect product of C2 with Z.

The free product has a universal property, which should remind you of the property of the
disjoint union of spaces XqY . First, for any groups H and K, there are inclusion homomorphisms
H −→ H ∗K and K −→ H ∗K.

Proposition 3.5. Suppose that G is any group with homomorphisms ϕH : H −→ G and
ϕK : K −→ G. Then there is a (unique) homomorphism Φ : H ∗ K −→ G which restricts to
the given homomorphisms from H and K.
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In other words, the free product is the coproduct in the world of groups.
So Proposition 3.1 can be restated as follows:

Proposition 3.6 (weak van Kampen). Suppose that X = U∪V , where U and V are path-connected
open subsets and both contain the basepoint x0. If U ∩ V is also path-connected, then the natural
homomorphism

Φ : π1(U) ∗ π1(V ) −→ π1(X)

is surjective.

Fri, Feb. 23

Now that we have a surjective homomorphism to π1(X), the next step is to understand the kernel
N . Indeed, then the First Isomorphism Theorem will tell us that π1(X) ∼=

(
π1(U) ∗ π1(V )

)
/N .

Here is one way to produce an element of the kernel. Consider a loop α in U ∩ V . We can then
consider its image αU ∈ π1(U) and αV ∈ π1(V ). Certainly these map to the same element of π1(X),
so αUα

−1
V is in the kernel.

Proposition 3.7. With the same assumptions as above, the kernel K of π1(U) ∗ π1(V ) −→ π1(X)
is the normal subgroup N generated by elements of the form αUα

−1
V .

Recall that the normal subgroup generated by the elements αUα
−1
V can be characterized either

as (1) the intersection of all normal subgroups containing the αUα
−1
V or (2) the subgroup generated

by all conjugates gαUα
−1
V g−1.

We will put off the proof of Propostion 3.7 for the moment. Assembling these recent results gives
the van Kampen theorem:

Theorem 3.8 (Van Kampen). Suppose that X = U ∪ V , where U and V are path-connected open
subsets and both contain the basepoint x0. If U ∩ V is also path-connected, then

π1(X,x0) ∼=
(
π1(U, x0) ∗ π1(V, x0)

)
/N,

where N E π1(U, x0) ∗ π1(V, x0) is the normal subgroup generated by elements of the form
ιU (α)ιV (α)−1, for α ∈ π1(U ∩ V, x0).

There is another, more elegant, way to state the Van Kampen theorem.

Definition 3.9. Suppose given a pair of group homomorphisms ϕG : H −→ G and ϕK : H −→ K.
We define the amalgamated free product (or simply amalgamated product) to be the quotient

G ∗H K = (G ∗K)/N,

where N EG ∗K is the normal subgroup generated by elements of the form ϕG(h)ϕK(h)−1.

It is easy to check that the amalgamated free product satisfies the universal property of the pushout
in the category of groups.

Theorem 3.10 (Van Kampen, restated). Let X be given as a union of two open, path-connected
subsets U and V with path-connected intersection U ∩ V . Then the inclusions of U and V into X
induce an isomorphism

π1(U) ∗π1(U∩V ) π1(V )
∼=−→ π1(X).

Since the pasting lemma tells us that in this situation, X can itself be written as a pushout, the
Van Kampen theorem can be interpreted as the statement that, under the given assumptions, the
fundamental group construction takes a pushout of spaces to a pushout of groups.

One important special case of this result is when U ∩ V is simply connected.
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Example 3.11. Take X = S1∨S1. Take U to be an open set containing one of the circles, plus an
ε-ball around the basepoint in the other circle, and similarly for V with regard to the other circle.
Then the intersection U ∩V looks like an ‘X’ and is contractible, and U and V are both equivalent
to S1. We conclude from this that

π1(S1 ∨ S1) ∼= π1(S1) ∗ π1(S1) ∼= Z ∗ Z ∼= F2.

Example 3.12. Take X = S1 ∨ S1 ∨ S1. We can take U to be a neighborhood of S1 ∨ S1 and V
to be a neighborhood of the remaining S1. Then

π1(S1 ∨ S1 ∨ S1) ∼= (Z ∗ Z) ∗ Z ∼= F3.

Example 3.13. Take X = S1∨S2. Take U to be a neighborhood of S1 and V to be a neighborhood
of S2. We conclude from this that

π1(S1 ∨ S2) ∼= π1(S1) ∗ π1(S2) ∼= Z.

A natural question now is whether π1(X ∨Y ) is always the free product of the π1(X) and π1(Y ).
Not quite, but a mild assumption allows us to make the conclusion. Note that in the S1 ∨ S1

example, we needed to know that the neighborhoods U and V were homotopy equivalent to S1

(and that the intersection was contractible).

Definition 3.14. We say that x0 ∈ X is a nondegenerate basepoint for X if x0 has a neigh-
borhood U such that x0 is a deformation retract of U .

Proposition 3.15. Let x0 and y0 be nondegenerate basepoints for X and Y , respectively. Then

π1(X ∨ Y ) ∼= π1(X) ∗ π1(Y ).

Proof. Suppose that x0 is a deformation retract of the neighborhood NX ⊆ X and that y0 is a
deformation retract of the neighborhood NY ⊆ Y . Let U = X ∨ NY and V = NX ∨ Y . Then
U ∩V = NX ∨NY . The retracting homotopies for NX and NY give U ' X, V ' Y , and U ∩V ' ∗.
The van Kampen theorem then gives the conclusion. �
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Mon, Feb. 26

Lemma 3.16 (Square Lemma). Let α, β, γ, and δ be paths in X with

α(0) = γ(0), α(1) = β(0), γ(1) = δ(0), β(1) = δ(1).

Then path-homotopies h : α ∗ β 'p γ ∗ δ correspond bijectively to maps
H : I2 −→ X as in the figure.

γ

β

δα H

Proof of Proposition 3.7. Again, it is clear that the kernel K must contain the subgroup N . It
remains to show that K ≤ N . Consider an element of K. For simplicity, we assume it is α1 ·β1 ·α2,
where αi ∈ π1(U) and β1 ∈ π1(V ). The assumption that this is in K means that there exists a
homotopy H : I × I −→ X from the path composition α1 ∗ β1 ∗ α2 in X to the constant loop.

By the Lebesgue lemma, we may subdivide the square
into smaller squares such that each small square is taken
by H into either U or V . Again, we suppose for simplicity
that this divides α1 into α11 and α12 and β1 into β11 and
β12 (and α2 is not subdivided).

Note that we cannot write

α1 · β1 · α2 = α11 · α12 · β11 · β12 · α2

in π1(U) ∗ π1(V ) since these are not all loops. But we
can fix this, using the same technique as in the proof of
Prop 3.1. In other words, we append a path δ back to x0

at the end of every path on an edge of a square. If that
path is in U (or V or U ∩ V ), we take δ in U (or V or
U ∩ V ). Also, if the path already begins or ends at x0,
we do not append a δ. For convenience, we keep the same
notation, but remember that we have really converted all
of these paths to loops.

Let us turn our attention now to the homotopy H on the first (lower-left) square. Either H takes
this into U or into V . If it is U , then we get a path homotopy in U α11 'p γ1 · v−1

1 . If, on the
other hand, H takes this into V , then it follows that α11 is really in U ∩ V . This gives us a path
homotopy in V α11 'p γ1 · v−1

1 . But the group element α11 comes from π1(U) in the free product
π1(U) ∗ π1(V ). We would like to replace this with the element α11 from π1(V ).

Lemma 3.17. Let γ be any loop in U ∩ V . Then, in the quotient group Q =
(
π1(U) ∗ π1(V )

)
/N ,

the elements γU and γV are equivalent.

Proof. The point is that

γVN = γUγ
−1
U γVN = γU ·

(
(γ−1)U (γ−1)−1

V

)
N = γUN.

�

From here on out, we work in the quotient group Q. The goal is to show that the original element
α1 · β1 · α2 is trivial in Q. According to the above, we can replace (α1)U (β1)V (α2)U with either

(γ1)U (v−1
1 )U (α12)U (β11)V (β12)V (α2)U

or

(γ1)V (v−1
1 )V (α12)U (β11)V (β12)V (α2)U .

We then do the same with each of α12, . . . , α2. The resulting expression will have adjacent terms
vi and v−1

i . For the same i, these two loops may have the same label (U or V ) or different labels.
But by the lemma, we can always change the label if the loop lies in the intersection. So we get
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the path-composition of the paths along the top edges of the bottom squares. We then repeat
the procedure, moving up rows until we get to the very top. But of course the top edges of the
top squares are all constant loops. It follows that we end up with the trivial element (of Q). So
K = N . �

The next application is the computation of the fundamental group of any graph. We start
by specifying what we mean by a graph. Recall that S0 ⊆ R is usually defined to be the set
S0 = {−1, 1}. For the moment, we take it to mean instead S0 = {0, 1} for convenience.

Definition 3.18. A graph is a 1-dimensional CW complex.

Of special importance will be the following type of graph.

Definition 3.19. A tree is a connected graph such that it is not possible to start at a vertex v0,
travel along successive edges, and arrive back at v0 without using the same edge twice.

(Give examples and nonexamples)

Proposition 3.20. Any tree is contractible. Even better, if v0 is a vertex of the tree T , then v0 is
a deformation retract of T .

Proof. We give the proof in the case of a finite tree. Use induction on the number of edges. If T has
one edge, it is homeomorphic to I. Assume then that any tree with n edges deformation retracts
onto any vertex and let T be a tree with n+ 1 edges. Let v0 ∈ T . Now let v1 ∈ T be a vertex that
is maximally far away from v0 in terms of number of edges traversed. Then v1 is the endpoint of a
unique edge e, which we can deformation retract onto its other endpoint. The result is then a tree
with n edges, which deformation retracts onto v0. �

Wed, Feb. 28

Corollary 3.21. Any tree is simply connected.

Definition 3.22. If X is a graph and T ⊆ X is a tree, we say that T is a maximal tree if it is
not contained in any other (larger) tree.

By Zorn’s Lemma, any tree is contained in some maximal tree.

Theorem 3.23. Let X be a connected graph and let T ⊆ X be a maximal tree. The quotient space
X/T is a wedge of circles, one for each edge not in the tree. The quotient map q : X −→ X/T is a
homotopy equivalence.

Proof. Since T contains every vertex, all edges in the quotient become loops, or circles. To see
that q is a homotopy equivalence, we first define a map b : X/T ∼=

∨
S1 −→ X. Recall that to

define a continuous map out of a wedge, it suffices to specify the map out of each wedge summand.
Fix a vertex v0 ∈ T ⊆ X. Pick a deformation retraction T down to v0 as in Proposition 3.20.
Then, for each vertex v, the homotopy provides a path αv : v0  v. Now suppose we have a circle
corresponding to the edge e in X from v1 to v2. We then send our circle to the loop αv1eα

−1
v2 .

The composition q ◦ b on a wedge summand S1 looks like c ∗ id ∗ c and is therefore
homotopic to the identity. For the other composition, we want to extend the given
homotopy on T to a homotopy on X. For simplicity, we give the argument in the
case that X = T ∪ e has a single edge not in a maximal tree. We wish to define
a homotopy h : X × I −→ X, but we already have the homotopy on the subspace
T × I. It remains to specify the homotopy on e × I, where we already have the
homotopy on the edges e0 × I and e1 × I. At time 0, the map b ◦ q takes e to
α1 ∗ e ∗ α−1

2 , whereas at time 1, the identity map takes e to e. We are now done by
the Square Lemma (3.16).

α1eα−1
2

α2α1

e

�
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Corollary 3.24. The fundamental group of any graph is a free group.

We will use this to deduce an algebraic result about free groups. But first, a result about
coverings of graphs.

Theorem 3.25. Let p : E −→ B be a covering, where B is a connected graph. Then E is also a
connected graph.

Proof. Recall our definition of a graph. It is a space obtained by glueing a set of edges to a set of
vertices. Let B0 be the vertices of B and B1 be the set of edges. Let E0 ⊆ E be p−1(B0) and define

E1 ⊆ B1 × E0

to be the set of pairs (α : {0, 1} −→ B0, v) such that α(0) = p(v). We then have compatible maps
E0 ↪→ E and qE1I −→ E. The second map is given by the unique path-lifting property. These
assemble to give a continuous map from the pushout

f : Ê = E0 ∪∐ ∂I

∐
e1

I −→ E.

This pushout is a 1-dimensional CW complex, which is our definition of a graph.

Fri, Mar. 2

To see that f is surjective, let x ∈ E. Then p(x) lies in some 1-cell β of B. Pick a path γ in B,
lying entirely in β, from p(x) to a vertex b0. Then γ lifts uniquely to a path γ̃ starting at x in E.
Write v = γ̃(1). Then x lives in the 1-cell (β, v), so f is surjective.

The restriction of f to E0 is injective, since this is the inclusion of the subset E0 ↪→ E. If y and
z are two points of Ê, where z is not a zero-cell and f(y) = f(z), then pf(y) = pf(z) in B. Since

pf(z) is not a 0-cell of B, we conclude that y is also not a 0-cell in Ê. Now pf(y) amd pf(z) live
in the same 1-cell of B, and since f(y) = f(z) in E, uniqueness of lifts tells us that y and z live

in the same 1-cell of Ê. But the restriction of pf to the interior of this 1-cell is a homeomorphism
onto the 1-cell of B. Since pf(y) = pf(z), we conclude that y = z.

There are now several arguments for why this must be a homeomorphism. If B is a finite graph
and E is a finite covering, we are done since E′ is compact and E is Hausdorff (since B is Hausdorff).

More generally, the map Ê −→ E is a map of covers which induces a bijection on fibers, so it must
be an isomorphism of covers. �

Now here is a purely algebraic statement, which we can prove by covering theory.

Theorem 3.26. Any subgroup H of a free group G is free. If G is free on n generators and the
index of H in G is k, then H is free on 1− k + nk generators.

Proof. Define B to be a wedge of circles, one circle for each generator of G. Then π1(B) ∼= G. Let
H ≤ G and let p : E −→ B be a covering such that p∗(π1(E)) = H. By the previous result, E is a
graph and so π1(E) is a free group by the result from last time.

For the second statement, we introduce the Euler characteristic of a graph, which is defined
as χ(B) = # vertices −# edges. In this case, we have χ(B) = 1 − n. Since H has index k in G,
this means that G/H has cardinality k. But this is the fiber of p : E −→ B. So E has k vertices,
and each edge of B lifts to k edges in E. So χ(E) = k − kn.

On the other hand, we know from last time that E is homotopy equivalent to E/T , where T ⊆ E
is a maximal tree. Note that collapsing any edge in a tree does not change the Euler characteristic.
The number of generators, say m of H, is then the number of edges in E/T , so we find that
χ(E) = 1−m. Setting these equal gives

k − kn = 1−m, or m = 1− k + kn.

�
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Mon, Mar. 5

We encountered an important idea in this proof, which can be defined more generally.

Definition 3.27. Let X be a CW complex having finitely many cells in each dimension (we saw
that X is finite type). Then the Euler characteristic of X is

χ(X) :=
∑
n≥0

(−1)n#{n-cells of X}.

In fact, the number χ(X) does not depend on the choice of CW structure on X, though this is
far from obvious from the definition. We will see Euler characteristics again later in the course.

3.1. The effect of attaching cells. The van Kampen Theorem also gives an effective means of
computing the fundamental group of a CW complex.

Given a space X and a map α : S1 −→ X, we may attach a disc along the map α to form a new
space

X ′ = X ∪α D2.

Since the inclusion of the boundary S1 ↪→ D2 is null, it follows that the composition

α : S1 −→ X −→ X ′

is also null. So we have effectively killed off the class [α] ∈ π1(X).
We can use the van Kampen theorem to show that this is all that we have done.

Proposition 3.28. Let X be path-connected and let α : S1 −→ X be a loop in X, based at x0.
Write X ′ = X ∪α D2. Then

π1(X ′, ι(x0)) ∼= π1(X)/[α].

Of course, we really mean the normal subgroup generated by α.

Proof. Consider the open subsets U and V of D2, where U = D2 − B1/3 and V = B2/3. The map

ιD2 : D2 −→ X ′ restricts to a homeomorphism (with open image) on the interior of D2, so the
image of V in X ′ is open and path-connected. Now let U ′ = X ∪ U . Since this is the image under
the quotient map X qD2 −→ X ′ of the saturated open set X q U , U ′ is open in X ′. It is easy to
see that U ′ is also path-connected.

Now U ′ and V cover X ′. Since U deformation retracts onto the boundary, it follows that U ′

deformation retracts onto X. The open set V is contractible. Finally, the path-connected subset
U ′ ∩ V deformation retracts onto the circle of radius 1/2. Moreover, the map

Z ∼= π1(U ′ ∩ V ) −→ π1(U ′) ∼= π1(X)

sends the generator to [α]. The van Kampen theorem then implies that

π1(X ′) ∼= π1(X)/〈α〉.
�

Actually, we cheated a little bit in this proof, since in order to apply the van Kampen theorem,
we needed to work with a basepoint in U ′ ∩ V . A more careful proof would include the necessary
change-of-basepoint discussion.

What about attaching higher-dimensional cells?

Proposition 3.29. Let X be path-connected and let α : Sn−1 −→ X be an attaching map for an
n-cell in X, based at x0. Write X ′ = X ∪α Dn. Then, if n ≥ 3,

π1(X ′, ι(x0)) ∼= π1(X).
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Proof. The proof strategy is the same as for a 2-cell, so we don’t reproduce it. The only change is
that now U ′ ∩ V ' Sn−1 is simply-connected. �

Wed, Mar. 7

Example 3.30. If we attach a 2-cell to S1 along the identity map id : S1 −→ S1, we obtain
D2. We have killed all of the fundamental group. If we attach another 2-cell, we get S2. Then
χ(S2) = 2− 2 + 2 = 2.

Attaching a 3-cell to S2 via id : S2 −→ S2 gives D3. Attaching a second 3-cell gives S3. The
previous results tells us that all spaces obtained in this way (Dn and Sn) will be simply connected.
Here we get χ(S3) = 2− 2 + 2− 2 = 0. More generally, we get

χ(Sn) =

{
2 n even

0 n odd.

Example 3.31. (RPn) A more interesting example is attaching a 2-cell to S1 along the double
covering γ2 : S1 −→ S1. Since this loop in S1 corresponds to the element 2 in π1(S1) ∼= Z, the
resulting space X ′ has π1(X ′) ∼= Z/2. We have previously seen (last semester) that this is just the
space RP2, since RP2 can be realized as the quotient of D2 by the relation x ∼ −x on the boundary.
This presents RP2 as a cell complex with a single 0-cell (vertex), a single 1-cell, and a single 2-cell.
Then χ(RP2) = 1− 1 + 1 = 1.

We can next attach a 3-cell to RP2 along the double cover S2 −→ RP2. The result is homeo-
morphic to RP3 by an analogous argument. By the above, this does not change the fundamental
group, so that π1(RP3) ∼= Z/2, and we count χ(RP3) = 1− 1 + 1− 1 = 0. In general, we have RPn
given as a cell complex with a single cell in each dimension. We have π1(RPn) ∼= Z/2 for all n ≥ 2,
and

χ(RPn) =

{
1 n even

0 n odd.

Example 3.32. (CPn) Recall that CP1 ∼= S2 is simply connected. Last semester, we showed that
CPn has a CW structure with a single cell in every even dimension. For example, CP2 is obtained
from CP1 by attaching a 4-cell. It follows that every CPn is simply-connected, and χ(CPn) = n+1.

Let’s look at a few more examples of CW complexes.

Example 3.33. (Torus) Attach a 2-cell to S1∨S1 along the map S1 −→ S1∨S1 given by aba−1b−1,
where a and b are the standard inclusions S1 ↪→ S1 ∨ S1. We saw last semester that the resulting
pushout is the torus, presented as a quotient of D2 ∼= I2.

We claim that
π1(T 2) ∼= F2/aba

−1b−1 ∼= Z2.

Proposition 3.34. The natural map ϕ : F (a, b) −→ Z2 defined by ϕ(a) = (1, 0) and ϕ(b) = (0, 1)
induces an isomorphism

F (a, b)/〈aba−1b−1〉 ∼= Z2.

Proof. Let K = ker(ϕ) and let N E F (a, b) be the normal subgroup generated by aba−1b−1. By
the First Isomorphism Theorem, F (a, b)/K ∼= Z2, so it suffices to show that N = K. Since
aba−1b−1 ∈ K, it follows that N ≤ K. Since N EK, we wish to show that the quotient group K/N

is trivial. Let g = an1bk1an2bk2an3 ∈ K/N . In K/N , we have ab = ba, so

an1bk1an2bk2an3 = an1+n2+n3bk1+k2 .

Since g ∈ K, we have n1 + n2 + n3 = 0 and k1 + k2 = 0, so g = e in K/N . �
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So the answer coming from the van Kampen theorem matches our previous computation of
π1(T 2).

In this cell structure on the torus, there is a single 0-cell (a vertex), two 1-cells (the two circles
in S1 ∨ S1), and a single 2-cell, so that

χ(T 2) = 1− 2 + 1 = 0.

Fri, Mar. 9

Example 3.35. (Klein bottle) One definition of the Klein bottle K is as the quotient of I2 in
which one opposite pair of edges is identified with a flip, while the other pair is identified without
a flip. This leads to the computation

π1(K) ∼= F (a, b)/〈aba−1b〉.

For certain purposes, this is not the most convenient description. Cut the square along a diagonal
and repaste the triangles along the previously flip-identified edges. The resulting square leads to
the computation

π1(K) ∼= F (a, c)/〈a2c2〉.

The equation c = a−1b allows you to go back and forth between these two descriptions.
Like the torus, the resulting cell complex has a single 0-cell, two 1-cells, and a single 2-cell, so

χ(K) = 1− 2 + 1 = 0.

The next example is not obtained by attaching a cell to S1 ∨ S1.

Example 3.36. If we glue the boundary of I2 according to the relation abab, the resulting space
can be identified with RP2. Notice in this case that the four vertices do not all become identified.
Rather they are identified in pairs, and we are left with two vertices after making the quotient.
This example can be visualized by thinking of identifying the two halves of ∂D2 via a twist. Using
this cell structure, we get

χ(RP2) = 2− 2 + 1 = 1.

3.2. The classification of surfaces. These 2-dimensional cell complexes are all examples of sur-
faces (compact, connected 2-dimensional manifolds).

There is an important construction for surfaces called the connected sum.

Definition 3.37. Suppose M and N are surfaces. Pick subsets DM ⊆ M and DN ⊆ N that are
homeomorphic to D2 and remove their interiors from M and N . Write M ′ = M − Int(DM ) and
N ′ = N − Int(DN ). Then the connected sum of M and N is defined to be

M#N = M ′ ∪S1 N ′,

where the maps S1 −→ M ′ and S1 −→ N ′ are the inclusions of the boundaries of the removed
discs.

Example 3.38. If M is a surface, then the connect sum M#S2 is again homeomorphic to M .
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Proposition 3.39. The connected sum RP2#RP2 is
homeomorphic to the Klein bottle, K.

Proof. See the figure to the right. �

Example 3.40. If M is a surface, then the connect sum M#T 2 can be viewed as M with a
“handle” glued on.

For example, consider M = T 2. Then T 2#T 2 looks liked a “two-holed torus”. This is called M2,
the (orientable) surface of genus two. From the cell structure resulting from the picture, we see a
wedge of four circles (let’s call the generators of the circles a1, b1, a2, b2) with a two-cell attached
along the element [a1, b1][a2, b2]. It follows that the fundamental group of M2 is

F (a1, b1, a2, b2)/[a1, b1][a2, b2].

We also find that χ(M2) = 1− 4 + 1 = −2.
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Mon, Mar. 19

Example 3.41. (Surface of genus g) Similarly, if we take a connect sum of g tori, we get the
surface of genus g, Mg. It has fundamental group

π1(Mg) ∼= F (a1, b1, . . . , ag, bg)/[a1, b1] . . . [ag, bg].

We now have χ(Mg) = 1− 2g + 1 = 2− 2g.

We are headed towards a “classification theorem” for compact surfaces, so let us now show that
if g1 6= g2 then Mg1 is not homeomorphic to Mg2 . We show this by showing they have different
fundamental groups. As we have said already, understanding a group given by a list of generators
and relations is not always easy, so we make life easier by considering the abelianizations of the
fundamental groups.

The abelianization Gab of G is the group defined by

Gab = G/[G,G],

where [G,G] is the (normal) subgroup generated by commutators.

Lemma 3.42. The abelianization F (a1, . . . , an)ab is the free abelian group Zn.

Proof. We already did this in the case n = 2 for understanding the fundamental group of the torus,
and the proof generalizes. �

The abelianization is characterized by a universal property. For a group G, let q : G −→ Gab be
the quotient map. Then the universal property of the quotient gives the following result.

Proposition 3.43. Let G be a group and A an abelian group. Then any homomorphism ϕ : G −→
A factors uniquely as G

q−→ Gab
ϕ−→ A.

When we apply this to the surface Mg, we get

Proposition 3.44. π1(Mg)ab ∼= Z2g.

Proof. Let F = F (a1, b1, . . . , an, bn), let N E F be the normal subgroup generated by (i.e. the
normal closure of) the product [a1, b1] . . . [ag, bg], and let G = π1(Mg) ∼= F/N . Since the quotient
map q : F −→ G is surjective, it follows that q([F, F ]) = [G,G]. By the Third Isomorphism
Theorem, we get

Gab := G/[G,G] = G/q([F, F ]) ∼= F/[F, F ] ∼= Z2g.

�

Lemma 3.45. If H ∼= G then Hab
∼= Gab.

As a result, we see that if g1 6= g2 then π1(Mg1) 6= π1(Mg2) because their abelianizations are not
isomorphic.

Corollary 3.46. If g1 6= g2 them Mg1 6∼= Mg2.

Note that we have also distinguished all of these from S2 (which has trivial fundamental group)
and from RP2 (which has abelian fundamental group Z/2Z).

What about the Klein bottle K? We found before the break that π1(K) ∼= F (a, b)/aba−1b. If
we abelianize this fundamental group, we get

Proposition 3.47. The abelianized fundamental group of the Klein bottle is

π1(K)ab ∼= (Z{a} × Z{b})/(a+ b− a+ b) = Z{a} × Z{b}/2b ∼= Z× Z/2Z.
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Proof. The idea is the same as in the previous examples. Under the quotient F (a, b) −→ Z{a} ×
Z{b}, the element aba−1b is sent to a+b−a+b (this is simply changing from multiplicative notation
to additive notation. �

This group is different from all of the others, so K is not homeomorphic to any of the above
surfaces. The last main example is

Example 3.48. (RP2#RP2# . . .#RP2) Suppose we take a connect sum of g copies of RP2. We
will call this surface Ng. Following the previous examples, we see that we get a fundamental group
of

π1(Ng) ∼= F (a1, . . . , ag)/a
2
1a

2
2 . . . a

2
g

and χ(Ng) = 1− g + 1 = 2− g. The abelianization is then

π1(Ng)ab ∼= Zg/(2, 2, . . . , 2).

Define a homomorphism ϕ : Zg/(2, . . . , 2) −→ Z/2Z× Zg−1 by

ϕ(n1, . . . , ng) = (n1, n2 − n1, n3 − n1, . . . , ng − n1).

Then it is easily verified that ϕ is an isomorphism. In other words,

π1(Ng)ab ∼= Z/2× Zg−1.

Ok, so we have argued that the compact surfaces S2, Mg (g ≥ 1), and Ng (g ≥ 1) all have
different fundamental groups and thus are not homeomorphic. The remarkable fact is that these
are all of the compact (connected) surfaces.

Theorem 3.49. Every compact, connected surface is homeomorphic to some Mg, g ≥ 0 or to some
Ng, g ≥ 1.

Corollary 3.50. If χ(M) = n is odd, then M ∼= N2−n

All of these examples are formed by taking connected sums of T 2’s or RP2’s. What happens if
we mix them?

Lemma 3.51. T 2#RP2 ∼= RP2#RP2#RP2.

In other words, one bad apple spoils the whole bunch. The proof is in the picture:
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In particular, this implies that Mg#Nk
∼= N2g+k.

Proof of the theorem. Let M be a compact, connected surface. We assume without proof (see
Prop 6.14 from Lee) that

• M is a 2-cell complex with a single 2-cell.
• the attaching map α : S1 −→ M1 for the 2-cell has the following property: let U be the

interior of a 1-cell. Then the restriction α : α−1(U) −→ U is a double cover. In other words,
if we label ∂D2 according to the edge identifications as we have done in the examples, each
edge appears exactly twice. Note that this must happen since each interior point on the
edge needs to have a half-disk on two sides.

So we can visualize M as a quotient of a 2n-sided polygon.
As we said above, each edge appears exactly twice on the boundary of the two-cell. If the two

occurrences have opposite orientations (as in the sphere), we say the pair is an oriented pair. If
the two occurrences have the same orientation (as in RP2), we say this is a twisted pair. There
will be 4 reductions in the proof!!

(1) If M ∼= S2, we are done, so suppose (for the rest of
the proof) this is not the case. Then we can reduce to
a cell structure with no adjacent oriented pairs. (Just
fold these together.)

(2) We can reduce to a cell structure where all twisted pairs are adjacent.

If this creates any adjacent oriented pairs, fold them in.
(3) We can reduce to a cell structure with a single 0-cell. Suppose a is an edge from x to y and

that x 6= y. Let b be the other edge connecting to y. By (1), b can’t be a−1. If b = a then
x = y. Suppose b 6= a, and write z for the other vertex on b. Then the edge b must occur
somewhere else on the boundary. We use the moves in the pictures below, depending on
whether the pair b is oriented or twisted.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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This converts a vertex y into a vertex x. Note that this procedure does not separate any
adjacent twisted pairs, since the adjacent twisted pair b gets replaced by d.

(4) Observe that any oriented pair a, a−1 is interlaced with another oriented pair b, b−1. If
not, we can write the boundary in the form aW1a

−1W2. Now, given our assumption and
previous steps, no edge in W1 gets identified with an edge in W2. It follows that if the
endpoints of a are x and y, then these two vertices never get identified with each other, as
the vertex x cannot appear in W1 and similarly y cannot appear in W2.

(5) We can further arrange it so that there is no interference: the oriented pairs of edges occur
as aba−1b−1 with no other edges in between. The proof is in the picture below, taken from
p. 177 of Lee.

Now we are done by Lemma 3.51. M is homeomorphic either to a connect sum of projective planes
or to a connect sum of tori. �

Fri, Mar. 23

We saw in Corollary 3.50 that if χ(M) is odd, we can immediately identify the homeomorphism
type of M . If χ(M) is even, this is not the case, as T 2 and K both have Euler characteristic equal
to 0. To handle the even case, we make a definition.

Say that a surface M is orientable if it has a cell structure as above with no twisted pairs of
edges.

Proposition 3.52. A surface is orientable if and only if it is homeomorphic to some Mg.

Proof. (⇐) Our standard cell structures for these surfaces have no twisted pairs of edges. (⇒)
Apply the algorithm described in the above proof, starting with only oriented pairs of edges. Step
1 does not introduce any new edges. Step 2 can be skipped. Steps 3 cuts-and-pastes along a pair
of oriented edges and so does not change the orientation of any edges. Step 4 does not change
the surface. Step 5 again only cuts-and-pastes along oriented edges. It follows that in reducing to
standard form, we do not introduce any twisted pairs of edges. �

In fact, you should be able to convince yourself that a surface is orientable if and only if every
cell structure as above has no twisted pairs. The point is that if you start with a cell structure
involving some twisted pairs and you perform the reductions described in the proof, you will never
get rid of any twisted pairs of edges.

The fact that the Mg can be embedded in R3 whereas the Ng cannot is precisely related to
orientability. In general, you can embed a (smooth) n-dimensional manifold in R2n, but you can
improve this to R2n−1 if the manifold is orientable. The definition we have given here depends
on particular kinds of CW structures, but other definitions of orientability (in terms of homology)
apply more widely.

In addition to the Ng’s, the Möbius band is a 2-manifold that is famously non-orientable.
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4. Higher homotopy groups

We have just been studying surfaces and have determined (well, at least given presentations for)
their fundamental groups. We have also seen (on exam 1) that there are higher homotopy groups
πn(X), so we might ask about the groups πn(Mg) and πn(Nk).

Recall, again from the exam, that any covering E −→ B induces an isomorphism on all higher
homotopy groups. So it suffices to understand the universal covers of these surfaces.

The first example would be M0 = S2, which is simply-connected. Note that this space is also the
universal cover of N1 = RP2, so these will have the same higher homotopy groups. We will come
back to these on Monday.

Another example is the componentwise-exponential covering q×q : R2 −→ T 2, which shows that
T 2 has no higher homotopy groups. Note that we also could have deduced this using that

πn(X × Y ) ∼= πn(X)× πn(Y )

and that S1 has no higher homotopy groups (also from Exam 1).

What about the Klein bottle K? Well, consider the relation on T 2 given by (x, y) ∼ (x+ 1
2 , 1−y).

The quotient T 2/ ∼ is K, and the quotient map T 2 −→ K is a double cover. It follows that the
universal cover of T 2, which is R2, is also the universal cover of K. So K also has no higher
homotopy groups!

For the surfaces of higher genus, we start by generalizing the double cover T 2 −→ K.

Proposition 4.1. If g ≥ 1, then there is a double cover of Ng by Mg−1.

Lemma 4.2. Suppose that p : E −→ B is a double cover of a surface B, and let W be another
surface. Then there is a double cover E#W#W −→ B#W .

The lemma implies the proposition as follows:

Proof. We already know about the double cover S2 −→ RP2, which is the case g = 1. Recall
(Lemma 3.51) that N3

∼= RP2#T 2. By the lemma, we get a double cover M2
∼= S2#T 2#T 2 −→

RP2#T 2 ∼= N3. By tacking on more copies of T 2, this handles the case of g odd.
We also discussed above the double cover T 2 −→ K, which is the case g = 2. By the lemma,

we get a double cover M3
∼= T 2#T 2#T 2 −→ K#T 2 ∼= N4. By tacking on more copies of T 2, this

handles the case of g even. �
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Mon, Mar. 26

Last time, we saw that there is a double covering of the nonorientable surface Ng by the orientable
surface Mg−1. It remains to find the universal cover of Mg−1.

Proposition 4.3. For g ≥ 1, the universal cover of Mg is R2.

Sketch. We have already shown this for g = 1. In the higher genus case, this is more difficult.
This is sometimes described using “hyperbolic” geometry. In that approach, R2 is replaced by the
(homeomorphic) upper half-place, equipped with the hyperbolic metric. The idea is that you can
tile the hyperbolic half-plane by polygons. Since Mg has a presentation as an (oriented) quotient
of a polygon, this establishes a covering of Mg by the half-plane. �

Ok, so we know that πn(RP2) ∼= πn(S2). What are these groups? We will show later that
π2(S2) ∼= Z. Just like for S1, a generator for this group is the identity map S2 −→ S2. But the
fascinating thing is that, in contrast to S1, there are plenty of interesting higher homotopy groups!
Here is a table of homotopy groups of spheres, taken from Wikipedia.

There are several things to note in this table.

(1) We have πn(S3) = πn(S2) for n ≥ 3. There is a map S3 −→ S2 that induces this isomor-
phism on homotopy groups. It is the Hopf map η we studied before (C2 − {0} −→ CP1).
This map is not a cover, since the fibers are circles. But this is a higher analogue of a cov-
ering: it is an S1-bundle. The analogue of the “evenly covered neighborhoos” here is called
“local triviality” of the bundle. This means that each point in x ∈ CP1 has a neighborhood
U such that η−1(U) ∼= S1×U . Remembering that a point in CP1 is of the form x = [z1 : z2],
consider the open sets U1 = {[z1 : z2]|z1 6= 0} and U2 = {[z1 : z2]|z2 6= 0}. These certainly
cover CP1, and the isomorphism

η−1(U1) ∼= S1 × U1

is

(z1, z2) 7→
(

z1

‖z1‖
, [z1 : z2]

)
.

37



A bundle still has a lifting property for paths and homotopies, but the lifts are no longer
unique. This means that we can’t necessarily lift an arbitrary map Y −→ S2 up to a map
Y −→ S3, and it need not be true that all higher homotopy groups of S2 are identified with
those of S3. It turns out that what happens here is that we have a “long exact sequence”
relating the homotopy groups of S3, S2, and S1 (most of which are trivial).

(2) We have πn(Sk) = 0 if n < k. The argument is similar to the one that showed the higher
spheres are all simply-connected. The main step is to show that any map Sn −→ Sk is
homotopic to a nonsurjective map if n < k.

(3) The answers are eventually constant on each diagonal. There is a suspension homomorphism
πn(Sk) −→ πn+1(Sk+1) that induces these isomorphisms. The stable answer for πk+n(Sk)
is known as the nth stable homotopy group of spheres and is written πsn. We have

πs0 = Z, πs1 = Z/2, πs2 = Z/2, πs3 = Z/24.

These groups are known out to around n = 60.
(4) Most of the unstable groups are finite. The only infinite ones are πn(Sn) = Z and

π4k−1(S2k). The latter are all Z×(finite group). This is a theorem of J. P. Serre. This
implies that all of the stable groups are finite, except πs0 = Z.

Ok, so homotopy groups are hard! But there are a few more examples of spaces whose homotopy
groups are all known, so let’s mention those before we abandon all hope and despair.

Example 4.4. Remember that we have a double cover Sn −→ RPn inducing an isomorphism on
all higher homotopy groups. But Sn does not have any homotopy groups until πn, so this means
that πk(RPn) = 0 if 1 < k < n. The inclusion Sn ↪→ Sn+1, (x0, . . . , xn) 7→ (x0, . . . , xn, 0) induces
an inclusion RPn ↪→ RPn+1. As n gets higher, we lose more and more homotopy groups. In the
limit, S∞ =

⋃
n S

n has no homotopy groups (and in fact it is contractible). Similarly, RP∞ has
only a fundamental group of Z/2 but no higher homotopy groups.

Example 4.5. There is an analogous story for CPn. Here, we have for every n, an S1-bundle
S2n−1 ' Cn − {0} −→ CPn. This map induces an isomorphism on πk for k ≥ 3 and gives
π2(CPn) ∼= π1(S1) ∼= Z. So the only nontrivial homotopy group of CP∞ is π2(CP∞) ∼= Z.

Wed, Mar. 28

Last time, we discussed higher homotopy groups of some familiar spaces. We saw that most
of the Mg and Ng have no higher homotopy groups. On the other hand, basic spaces like S2

and RP2 have very complicated (and unknown) higher homotopy groups. The other examples in
which we had complete understanding of the higher homotopy groups were the infinite-dimensional
complexes RP∞ and CP∞. It turns out that this is quite typical: a finite cell complex almost always
has infinitely many nontrivial homotopy groups!

5. Homology

This is rather disheartening. We think of a cell complex as an essentially finite amount of
information. It would be nice if we only got finitely many algebraic objects out of it. There is
such a construction: homology. As we will see, this will combine a number of the ideas we have
recently encountered: the fundamental group and Euler characteristics. A good way to think about
homology is that it is a more sophisticated version of the Euler characteristic.

We will deal with two versions of homology. The first, singular homology, is a good theoretical
tool that is convenient for proving theorems. But it is not great for doing actual calculations.
For that purpose, we will also consider cellular homology, which is defined for CW complexes.
Simplicial homology is yet another version which is convenient for calculation, though we will
not consider this version in our course.
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5.1. Singular homology. Let ∆n denote the standard n-simplex, which can be defined as

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1, ti ≥ 0}.

We will denote by vi ∈ ∆n the vertex defined by ti = 1 and tj = 0 if j 6= i. Note that each “facet”
of the simplex, in which we have restricted one of the coordinates to zero, is an (n−1)-dimensional
simplex. More generally, if we set k of the coordinates equal to zero, we get a face which is an
(n− k)-dimensional simplex.

Definition 5.1. Let X be a space. A singular n-simplex of X will simply be a continuous map
∆n −→ X.

Let CSing
n (X), or simply Cn(X), be the free abelian group on the set of singular n-simplices of

X. An element of Cn(X) is referred to as a (singular) n-chain on X. Our goal is to assemble the
Cn(X), as n varies, into a “chain complex”

. . . −→ C3(X) −→ C2(X) −→ C1(X) −→ C0(X).

To say that this is a chain complex just means that composing two successive maps in the sequence
gives 0.

Fri, Mar. 30

Exam day
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Mon, Apr. 2

We wish to specify a homomorphism

∂n : Cn(X) −→ Cn−1(X).

Since Cn(X) is a free abelian group, the homomorphism ∂n is completely specified by its value on
each generator, namely each n-simplex.

There are n+ 1 standard inclusions di : ∆n−1 ↪→ ∆n, given by inserting 0 in position i in ∆n.

Definition 5.2. The singular boundary homomorphism

∂n : Cn(X) −→ Cn−1(X)

is defined by

∂n(σ) =
n∑
i=0

(−1)i[σ ◦ di].

Example 5.3.

(1) If σ is a 1-simplex (from v0 to v1), then

∂1(σ) = [σ ◦ d0]− [σ ◦ d1] = [v1]− [v0].

(2) If σ is a 2-simplex with vertices v0, v1, and v2, and edges e01, e02, and e12, then

∂2(σ) = [σ ◦ d0]− [σ ◦ d1] + [σ ◦ d2] = [e12]− [e02] + [e01]

The claim is that this defines a chain complex. The signs have been inserted into the definition
to make this work out.

Proposition 5.4. The boundary squares to zero, in the sense that ∂n−1 ◦ ∂n = 0.

Proof. We will use

Lemma 5.5. For i > j, the composite

∆n−2 dj−→ ∆n−1 di−→ ∆n is equal to the composite ∆n−2 di−1

−−−→ ∆n−1 dj−→ ∆n.

Consider the case i = 3, j = 1, n = 4. We have

d3(d1(t1, t2, t3)) = d3(t1, 0, t2, t3) = (t1, 0, t2, 0, t3) = d1(t1, t2, 0, t3) = d1(d2(t1, t2, t3)).

This argument generalizes.
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For the proposition,

∂n−1

(
∂n(σ)

)
= ∂n−1

(
n∑
i=0

(−1)i[σ ◦ di]

)

=
n∑
i=0

(−1)i ∂n−1([σ ◦ di])

=
n∑
i=0

(−1)i
n−1∑
j=0

(−1)j [σ ◦ di ◦ dj ]

=

n∑
i=0

∑
j<i

(−1)i(−1)j [σ ◦ di ◦ dj ] +

n∑
i=0

∑
j≥i

(−1)i(−1)j [σ ◦ di ◦ dj ]

(changing bounds) =
n∑
i=1

∑
j<i

(−1)i(−1)j [σ ◦ di ◦ dj ] +
n−1∑
i=0

∑
j≥i

(−1)i(−1)j [σ ◦ di ◦ dj ]

(Lemma) =
n∑
i=1

∑
j<i

(−1)i(−1)j [σ ◦ dj ◦ di−1] +
n−1∑
i=0

∑
j≥i

(−1)i(−1)j [σ ◦ di ◦ dj ]

= −
n−1∑
j=0

∑
i−1≥j

(−1)j(−1)i−1[σ ◦ di ◦ dj ] +

n−1∑
i=0

∑
j≥i

(−1)i(−1)j [σ ◦ di ◦ dj ]

= 0.

�

We have shown that any two successive simplicial boundary homomorphisms compose to zero,
so that we have a chain complex. What do we do with a chain complex? Take homology!

Definition 5.6. If

. . . −→ Cn+1
∂n+1−−−→ Cn

∂n−→ . . .

is a chain complex, then we define the nth homology group Hn(C∗, ∂∗) to be

Hn(C∗, ∂∗) := ker ∂n/ im ∂n+1.

Note that the fact that ∂n ◦ ∂n+1 = 0 implies that im ∂n+1 is a subgroup of ker ∂n, so that
the definition makes sense. A complex (C∗, ∂∗) is said to be exact at Cn if we have equality
ker ∂n = im ∂n+1. Thus the homology group Hn(C∗, ∂∗) “measures the failure of C∗ to be exact at
Cn.”

Definition 5.7. Given a space X, we define the singular homology groups of X to be

Hn(X;Z) := Hn(C∗(X), ∂∗).

Note that we only defined the groups Cn(X) for n ≥ 0. For some purposes, it is convenient to
allow chain groups Cn for negative values of n, so we declare that Cn(X) = 0 for n < 0. This
means that ker ∂0 = C0(X), so that H0 = C0(X)/ im ∂1 = coker(∂1).

Terminology: The group ker ∂n is also known as the group of n-cycles and sometimes written
Zn. The group im(∂n+1) is also known as the group of boundaries and sometimes written Bn.

Wed, Apr. 4

Remark 5.8. It is worth noting that since each Cn(X) is free abelian and ker ∂n and im ∂n+1 are
both subgroups, they are necessarily also free abelian.
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Example 5.9. Consider X = ∗. Then Cn({∗}) = Z{Top(∆n, {∗})} ∼= Z for all n. The differential
∂n : Cn({∗}) −→ Cn−1({∗}) takes the (constant) singular n-simplex cn to the alternating sum∑

i

(−1)icn−1 =

{
cn−1 n even
0 n odd

.

In other words, the chain complex is

. . .
1−→ Z 0−→ Z 1−→ Z 0−→ Z,

so that the only nonzero homology group is H0(∗) ∼= Z.

But already for X = ∆1, the chain groups are infinite rank, and computing becomes impractical.
On the other hand, the singular homology groups have good properties. For starters, we will discuss
functoriality.

Given a map f : X −→ Y , we can compose any singular n-simplex of X with f to get a singular
n-simplex of Y . This produces a function

fn : Singn(X) −→ Singn(Y )

and therefore a homomorphism

fn : Cn(X) −→ Cn(Y ).

It remains to discuss how this interacts with homology.

Definition 5.10. Let (C∗, ∂
C
∗ ) and (D∗, ∂

D
∗ ) be chain complexes. Then a chain map f∗ :

(C∗, ∂
C
∗ ) −→ (D∗, ∂

D
∗ ) is a sequence of homomorphisms fn : Cn −→ Dn, for each n, such that

each diagram

Cn
fn //

∂Cn
��

Dn

∂Dn
��

Cn−1
fn−1

// Dn−1

commutes for each n.

Since fn is given by post-composition with f , whereas each term of ∂n is given by precomposing
with the face inclusions, it follows that the homomorphisms (f∗) on the singular chains assemble
to produce a chain map.

We set up this definition in order to get

Proposition 5.11. A chain map f∗ : (C∗, ∂
C
∗ ) −→ (D∗, ∂

D
∗ ) induces homomorphisms fn :

Hn(C∗, ∂
C
∗ ) −→ Hn(D∗, ∂

D
∗ ) for each n.

Proof. Let x ∈ Cn be a cycle, meaning that ∂C(x) = 0. Then ∂D(fn(x)) = fn−1(∂C(x)) =
fn−1(0) = 0, so that fn(x) is a cycle in Dn. In order to get a well-defined map on homology,
we need to show that if x is in the image of ∂Cn+1, then fn(x) is in the image of ∂Dn+1. But if

x = ∂Cn+1(y), then fn(x) = fn(∂Cn+1(y)) = ∂Dn+1fn+1(y), which shows that fn(x) is a boundary. �

There is an obvious way to compose chain maps, so that chain complexes and chain maps form
a category Ch≥0(Z).

Proposition 5.12. The assignment X 7→ (C∗(X), ∂∗) and f 7→ f∗ defines a functor

C∗ : Top −→ Ch≥0(Z).
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Given the above discussion, it only remains to show that this construction takes identity mor-
phisms to identity morphisms and that it preserves composition. We leave this as an exercise.

Note that the sequence of homology groups Hn(C∗, ∂
C
∗ ) of a chain complex is not quite a chain

complex, since there are no differentials between the homology groups. You can think of this as
a degenerate case of a chain complex, in which all differentials are zero. But it is more common
to simply call this a graded abelian group. If X∗ and Y∗ are graded abelian groups, then a
graded map f∗ : X∗ −→ Y∗ is simply a collection of homomorphisms fn : Xn −→ Yn. Graded maps
compose in the obvious way, so that we get a category GrAb of graded abelian groups. Then
Proposition 5.11 is the main step in proving

Proposition 5.13. Homology defines a functor

H∗ : Ch≥0(Z) −→ GrAb.

The composition of two functors is always a functor. Thus Proposition 5.12 and Proposition 5.13
combine to yield

Proposition 5.14. Singular homology defines a functor

HSing
∗ : Top −→ GrAb.

This implies, for instance, that homeomorphic spaces have isomorphic singular homology groups.

Fri, Apr. 6

Last time, we discussed how a map of spaces induces a map on homology. Previously, we saw
that the induced map on fundamental groups only depended on the homotopy class of the map,
and we might ask the same question here.

Proposition 5.15. Suppose that f ' g as maps X −→ Y . Then f and g induce the same map on
homology.

Corollary 5.16. If f : X −→ Y is a homotopy equivalence, then f induces an isomorphism on
homology.

Sketch of Proposition 5.15. See Theorem 13.8 of Lee for complete details.
If we have maps f, g : X −→ Y , it would be enough to show that their difference f∗ − g∗ at the

level of chains always takes values in the group of boundaries. Unfortunately, this is not always
true, but it turns out to be true on cycles, which is enough to deduce the proposition. For simplicity,
we consider the “universal” case, in which Y = X × I and f and g are the inclusions at time 0 and
1, respectively.

The idea is to define a homomorphism (called a “chain-homotopy”) hn : Cn(X) −→ Cn+1(X×I)
for all n, satisfying the equation

h ◦ ∂ + ∂ ◦ h = g∗ − f∗.
If you plug in a cycle x to this formula, you learn that g∗(x)− f∗(x) is a boundary, so that f∗ and
g∗ agree at the level of homology.

When n = 0, we simply take h0(x) to be the constand path in X × I from (x, 0) to (x, 1). At
level 1, if σ is a path in X, we wish to define h1(σ) ∈ C2(X × I) with

h0(σ(1)− σ(0)) + ∂ ◦ h1(σ) = σ × {1} − σ × {0}.

We take h1(σ) to be the formal difference of simplices with vertices (σ0, 0), (σ1, 0), and (σ1, 1) and
(σ0, 0), (σ0, 1), (σ1, 1). Similar formulas work in higher dimensions. �
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Example 5.17. We saw that the one-point space has homology groups nonvanishing only in
dimension zero, given by the group Z. It follows that the same is true for any contractible space,
such as In or Dn or Rn.
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Mon, Apr. 9

5.2. The functor H0(−).

Proposition 5.18. If X is path-connected and nonempty, then H0(X) ∼= Z.

Proof. Define ε : C0(X) −→ Z by sending each 0-simplex (i.e. point of X) to 1. As X is nonempty,
the map ε is surjective. We claim that ker(ε) = B0 = im(∂1).

For any 1-simplex σ, ∂1(σ) = σ(1)− σ(0), so ε(∂1(σ)) = ε(σ(1)− σ(0)) = 1− 1 = 0. This shows
that B0 ⊆ ker(ε).

Now suppose that c =
∑k

i=1 nixi is a 0-chain. Pick a point x0 ∈ X, and, for each i = 1, . . . , k,
pick a path αi : x0  xi. Then ∂1(αi) = xi − x0, so that xi ≡ x0 in C0(X)/B0(X). Therefore
c ≡ (

∑
i ni)x0 in C0(X)/B0. Now if c ∈ ker(ε), this means that

∑
i ni = 0, so that c ≡ 0 in

C0(X)/B0. In other words, c ∈ B0. �

To describe H0 for a general space, we first discuss how path components interact with homology.

Proposition 5.19. Let {Xα} be the set of path-components of X and ια : Xα −→ X the inclusions.
These induce an isomorphism ⊕

α

H∗(Xα) ∼= H∗(X).

Proof. Since the image of any singular n-simplex must be contained in a single path-component,
we get already a splitting of the chain complexes⊕

α

C∗(Xα) ∼= C∗(X).

This produces the splitting on the level of homology. �

Corollary 5.20. For any space X, H0(X) is free abelian on the set of path-components of X. In
other words,

H0(X) ∼= Z{π0(X)}.

5.3. The Mayer-Vietoris Sequence. One of the fundamental tools for computing homology is
the Mayer-Vietoris sequence, which is analogous to the van Kampen theorem for the fundamental
group. First, some terminology.

Recall (from just before Definition 5.7) that we say that a sequence A
f−→ B

g−→ C is exact if
it has no homology, meaning that im(f) = ker(g). Very often, we encounter an exact sequence
in which either A or C is 0. If A = 0, then the image of f must also be zero, so that g must be
injective. Similarly, if C = 0, then the kernel of g must be all of B, so that f must be surjective.
For a longer sequence, such as A −→ B −→ C −→ D −→ E −→ . . . , we say it is exact if it is so at
each group in the sequence.

We consider a space X with open subsets U and V . We will denote the inclusions as in the
diagram

U
k

!!
U ∩ V

i
;;

j ##

X

V
`

==
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Theorem 5.21 (Mayer-Vietoris long exact sequence). Let X be a space, and let U and V be open
subsets with U ∪ V = X. Then there is a long exact sequence in homology

. . .
∂n+1−−−→ Hn(U ∩ V )

i∗⊕j∗−−−→ Hn(U)⊕Hn(V )
k∗−`∗−−−−→ Hn(X)

∂n−→ Hn−1(U ∩ V )
i∗⊕j∗−−−→ . . .

Before proving the theorem, we give a sample application.

Example 5.22. (H∗(S
k)) Combining Example 5.9 with Proposition 5.19 gives that

Hi(S
0) ∼=

{
Z2 i = 0

0 else.
.

Wed, Apr. 11

We use the Mayer-Vietoris sequence to compute the homology of the higher spheres. We argue
by induction that for k > 0,

Hi(S
k) ∼=

{
Z i = 0, k

0 else.
.

The base case is S1. Take U and V to be the open subsets of S1 given by removing the north and
south poles, respectively. Notice that U and V are both contractible and that U ∩ V deformation
retracts to the equatorial S0. Thus the Mayer-Vietoris sequence becomes

. . .
∂n+1−−−→ Hn(S0)

i∗⊕j∗−−−→ Hn(∗)⊕Hn(∗) k∗−`∗−−−−→ Hn(S1)
∂n−→ Hn−1(S0)

i∗⊕j∗−−−→ . . . .

Note that when n is larger than 1, then Hn(S1) is flanked by two zero groups and must therefore
by zero. We are left then only with the exact sequence

0 −→ H1(S1)
∂1−→ H0(S0)

i∗⊕j∗−−−→ H0(∗)⊕H0(∗) k∗−`∗−−−−→ H0(S1) ∼= Z −→ 0.

This becomes

0 −→ H1(S1)
∂1−→ Z2

(
1 1
1 1

)
−−−−−→ Z2 (1 −1)−−−−→ Z −→ 0.

It follows that the image of ∂1 is the subgroup generated by (1,−1), so that H1(S1) ∼= Z.
Now for the induction step, suppose the formula holds for H∗(S

k) and consider Sk+1. We again
take U and V to be the complements of the poles in Sk+1. Now the Mayer-Vietoris sequence
becomes

. . .
∂n+1−−−→ Hn(Sk)

i∗⊕j∗−−−→ Hn(∗)⊕Hn(∗) k∗−`∗−−−−→ Hn(Sk+1)
∂n−→ Hn−1(Sk)

i∗⊕j∗−−−→ . . . .

We know by Proposition 5.18 that H0(Sk+1) ∼= Z, and the exact sequence gives that

Hn+1(Sk+1)
∂n+1−−−→ Hn(Sk) is an isomorphism for n ≥ 1. Finally, the group H1(Sk+1) is in the

exact sequence

0 −→ H1(Sk+1)
∂1−→ H0(Sk)

i∗⊕j∗−−−→ H0(∗)⊕H0(∗) −→ H0.

The map i∗ ⊕ j∗ is the diagonal map Z −→ Z2, which is injective. It follows that H1(Sk+1) = 0.

Fri, Apr. 13

The main step in the proof of the Mayer-Vietoris theorem is the following result. We say that

a sequence 0 −→ A∗
i−→ B∗

q−→ C∗ −→ 0 of chain complexes is exact if each sequence 0 −→ An
i−→

Bn
q−→ Cn −→ 0 is exact.
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Proposition 5.23. A short exact sequence 0 −→ A∗
i−→ B∗

q−→ C∗ −→ 0 of chain complexes induces
a long exact sequence in homology

. . . −→ Hn+1(C)
δ−→ Hn(A)

i∗−→ Hn(B)
q∗−→ Hn(C)

δ−→ Hn−1(A) −→ . . .

Proof. We start with the construction of the “connecting homomorphism δ”. Thus let c ∈ Cn be a
cycle. Choose a lift b ∈ Bn, meaning that q(b) = c. We then have q(∂n(b)) = ∂n(q(b)) = ∂n(c) = 0.
Since the rows are exact, we have ∂n(b) = i(a) for some unique a ∈ An−1, and we define

δ(c) := a.

b � //
_

��

c_

��
a � // ∂(b) � // 0

It remains to see how a depends on the choice of b. Thus let d ∈ ker(q), so that q(b + d) = c. By
exactness, we have d = i(e) for some e ∈ An. Then

i(a+ ∂n(e)) = ∂n(b) + i(∂n(e)) = ∂n(b) + ∂n(i(e)) = ∂n(b) + ∂n(d) = ∂n(b+ d),

so that δ(c) = a+ ∂n(e) ∼ a. In other words, a specifies a well-defined homology class.
Since we want δ to be well-defined not only on cycles but also on homology, we need to show

that if c is a boundary, then δ(c) ∼ 0. Thus suppose c = ∂(c′). We can then choose b′ such that
q(b′) = c′. It follows that ∂(b′) would be a suitable choice for b. But then ∂(b) = ∂(∂(b′)) = 0, so
that δ(c) = 0.

Exactness at B: First, we see that q∗ ◦ i∗ = 0 since this is already true at the chain level. Now
suppose that b ∈ ker(q∗). This means that q(b) = ∂(c) for some c ∈ Cn+1. Now choose a lift
d ∈ Bn+1 of c. Then we know

q(∂(d)) = ∂(q(d)) = ∂(c) = q(b).

In other words, q(b−∂(d)) = 0, so that we must have b−∂(d) = i(a) for some a. Since b ∼ b−∂(d),
we are done.

Exactness at C: We first show that δ ◦ q∗ = 0. Thus let b ∈ Bn be a cycle. We wish to show that
δ(q∗(b)) = 0. But the first step in constructing δ(q(b)) is to choose a lift for q(b), which we can of
course take to be b. Then ∂(b) = 0, so that a = 0 as well.

Now suppose that c ∈ Cn is a cycle that lives in the kernel of δ. This means that a = ∂(e) for
some e. But then b− i(e) is a cycle, and q(b− i(e)) = c, so c is in the image of q∗.

Exactness at A: First, we show that i∗ ◦ δ = 0. Let c ∈ Cn be a cycle. Then if δ(c) = a, then by
construction, we have i(a) = ∂(b) ∼ 0, so that i∗ ◦ δ = 0.

Finally, suppose that a ∈ An is a cycle that lives in ker i∗. Then i(a) = ∂(b) for some b, but then
a = δ(q(b)). �

Sketch of Theorem 5.21. We would like to apply Proposition 5.23 to the sequence

0 −→ C∗(U ∩ V )
i∗+j∗−−−→ C∗(U)⊕ C∗(V )

k∗−`∗−−−−→ C∗(X) −→ 0.

The problem is that this is not exact at C∗(X). The reason is that not every singular n-simplex in

X is contained entirely in U or V . Instead, we introduce the subcomplex CU,V∗ (X), where CU,Vn (X)
is the free abelian group on simplices which are entirely contained in either U or V .

We claim that the inclusion CU,V∗ (X) ↪→ C∗(X) is a chain homotopy equivalence. We need to

define a homotopy inverse f : C∗(X) −→ CU,V∗ (X). The idea is to use “barycentric subdivision”.
The subdivision of an n-simplex expresses it as the union of smaller n-simplices. By the Lebesgue
Number Lemma, repeated barycentric subdivision will eventually decompose any singular n-simplex
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of X into a collection of n-simplices, each of which is either contained in A or in B. This subdivision
allows you to define a chain map f . You then show that subdivision of simplices is chain-homotopic
to the identity. See Proposition 2.21 of Hatcher for a much more detailed discussion. �
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5.4. The Hurewicz Theorem. We saw previously that H0(X) ∼= Z{π0(X)}. What about H1(X)?
It turns out this is closely related to π1(X). First note that given a map α : S1 −→ X, we get an
induced map Z ∼= H1(S1) −→ H1(X). If we pick a preferred generator for H1(S1), for example the
1-simplex ∆1 −→ S1 which is the quotient map

∆1 ∼= I −→ I/∂I ∼= S1,

then this picks out a particular element of H1(X).

Proposition 5.24. This element α∗(1) ∈ H1(X) only depends on the homotopy class of α.

Proof. This follows from Proposition 5.15. �

We then define the Hurewicz function

h : π1(X,x0) −→ H1(X)

by h([α]) = α∗(1). By the proposition, this is well-defined on homotopy-classes.

Theorem 5.25 (Hurewicz). Assume that X is path-connected. Then h induces an isomorphism

H1(X) ∼= π1(X,x0)ab.

Proof. We first show that h is a group homomorphism. First, it preserves identity elements since
if we consider the constant loop at x0 as a 1-cycle, we can express it as the boundary of the
constant 2-simplex at x0. Next, suppose we have two loops α and β. We wish to show that
h(α · β) = h(α) + h(β). Either by using the Square Lemma (Lemma 3.16) or by writing one down
explicitly, we can define a 2-simplex σα,β whose restriction to the boundary is the three edges α,
αβ, and β. Then ∂(σα,β) = α− α · β + β. This shows that h(α · β) = h(α) + h(β).

Since we now know that h is a homomorphism, we can use the universal property of abelianization
to factor

h : π1(X) −→ H1(X)

through ĥ : π1(X)ab −→ H1(X). It remains to show that ĥ is bijective.
(Surjectivity): For each x ∈ X, pick a path px : x0  x. We also write p : C0(X) −→ C1(X) for

the resulting function. Now for each 1-simplex a, we can define a loop ã at x0 by pa(0) · a · pa(1).
Then

h(ã) = [pa(0)] + [a] + [pa(1)] = [a] + [p ◦ ∂(a)].

Now take an arbitrary 1-cycle c =
∑

i niai. Then we get

h(ã1
n1 ã2

n2 · · · ãknk) =
∑
i

ni[ai] + ni[p ◦ ∂(ai)] = [c] + p([∂(c)]) = [c]

since c was assumed to be a cycle.

Wed, Apr. 18

(Injectivity): Let α ∈ π1(X) be in the kernel of h. We wish to show that α is trivial in π1(X)ab. If
h(α) = 0, this means that α, when considered as a 1-simplex, is a boundary. Suppose, for example,
that

α = ∂(σ)

for some 2-simplex σ : ∆2 −→ X. But ∂(σ) = σ1,2 − σ0,2 + σ0,1, so if this is equal to α in C1(X),
then α must be either σ0,1 or σ1,2, and the other of these edges must agree with σ0,2. Write β
for the path σ0,1. Then, by the square lemma, the two-simplex σ gives rise to a path-homotopy
αβ 'p β. In other words, α 'p cx0 .
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The trouble is that, in general, there is no reason to expect α to be the differential on a single
2-simplex. Rather, we expect to have

α = ∂(
∑

niσi).

Again, from the square lemma, each of these 2-simplices σi will give rise to a path-homotopy. All
of the faces of the σi’s cancel in C1(X), to leave only α. If we try to do the same manipulation in
π1(X), using the path-homotopies, we need to allow ourselves to commute elements, since this can
happen in C1(X) to allow for the cancellation there. So if we abelianize π1(X), we can perform
the same cancellation to show that [α] = [cx0 ] ∈ π1(X)ab. �

Example 5.26. Recall from Proposition 3.44 that π1(Mg)ab ∼= Z2g. It follows that

H1(Mg) ∼= Z2g.

Example 5.27. Recall from Example 3.48 that π1(Ng)ab ∼= Zg−1 ⊕ Z/2Z. It follows that

H1(Ng) ∼= Zg−1 ⊕ Z/2Z.

In fact, a stronger version of the Hurewicz theorem holds. We will not prove the stronger version.

Theorem 5.28. Suppose that πk(X) = 0 for k < n, where n > 1. Then Hn(X) ∼= πn(X).

Corollary 5.29. Let n > 1. Then πk(S
n) =

{
Z k = n

0 0 < k < n.
.

Proof. We already showed that this is the homology of the sphere. Since Sn is simply connected,
Theorem 5.28 gives that π2(Sn) ∼= H2(Sn). If n = 2, this is Z and we are done. If n > 2, this is
0, and then we apply the Hurewicz theorem at level 3. Repeat until you reach the first nonzero
homology group. �

5.5. Cellular homology. While singular homology is defined for all spaces and is nicely functorial,
it is not so practical for computing by hand. For this purpose, we introduce cellular homology,
which is defined for CW complexes.

Recall that at the end of last semester, we defined the degree of a map f : S1 −→ S1 by
considering the induced map on fundamental groups. This map is multiplication by some integer,
which we called the degree. If f was not based, the definition of degree involved the change-of-
basepoint homomorphism. But now that we know about (singular) homology, there is a simpler
definition, which works equally well in higher dimensions.

Definition 5.30. Let f : Sn −→ Sn be any map. for n ≥ 1. Then the induced map on homology

f∗ : Hn(Sn) −→ Hn(Sn)

is multiplication by some integer d. We define the degree of f to be this integer d.

Fri, Apr. 20

Definition 5.31. Let X be a CW complex. Define the group Ccelln (X) of cellular n-chains by

Ccelln := Z{n-cells of X}.

To specify the differential dn : Cn(X) −→ Cn−1(X), we need to give the coefficients in

dn(f) =
∑

niei.
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Here f is an n-cell, which is described by its attaching map Sn−1 f−→ skn−1X. The coefficient ni in
the expansion is the degree of the map

Sn−1 f−→ Xn−1 � Xn−1/Xn−2 ∼=
∨
Sn−1 ei−→ Sn−1.

This works well if n− 1 ≥ 1. The d1 is defined similarly. A 1-cell e is determined by the attaching
map, which simply specifies the endpoints e(1) and e(0). We define d1(e) = e(1)− e(0).

We now define the cellular homology groups to be the homology of this complex:

Hcell
n (X) := Hn(Ccell∗ (X)).

On the face of it, this definition does not make sense, since we have not verified that d ◦ d = 0.
Probably the simplest way to establish this is to recognize that Ccelln (X) ∼= Hn(skn(X)/skn−1(X)).
Then the cellular differential can be viewed as the connecting homomorphism in a Mayer-Vietoris
sequence. See the dicsussion above Theorem 2.35 of Hatcher for more details.

This definition of homology might sound complicated, but in practice it is quite simple. For
instance, if our CW complex has a single 0-cell, then each 1-cell must be a loop, and the d1-
differential is just zero. Another immediate consequence of the definition is the following.

Proposition 5.32. Suppose that X is an n-dimensional CW complex. Then Hcell
k (X) = 0 for

k > n.

This is simply because X has no cells above dimension n, so that Ccellk (X) = 0 if k > n.
Let’s look at some examples.

Example 5.33. Take X = S2. Pick the CW structure having a single vertex and a single 2-cell.
Then C1(X) = 0, so both d2 and d1 must be the zero map. The chain complex C∗(S

2) is

Z d2−→ 0
d1−→ Z.

Here we get H0 = H2 = Z and H1 = 0. The same would for any Sn, with n ≥ 2.

Example 5.34. Take X = S2. Pick the CW structure having a single vertex, a single edge, and
two 2-cells attached via the identity map S1 ∼= S1. Then C0(S2) = C1(S2) = Z and C2(S2) = Z2.
The map

d1 : C1 = Z −→ C0 = Z
is d1(e) = 0 since the edge e is a loop. If we write f1 and f2 for the 2-cells, we see that d2(f1) =
d2(f2) = e. Thus the resulting chain complex is

Z2 (1 1)−−−→ Z 0−→ Z.
Here we see that H0

∼= Z since d1 = 0, so that B0 = 0 and H0 = Z0 = Z. Next, the statement
d1 = 0 also means that Z1 = C1 = Z, and we see that d2 is surjective, so that B1 = Z1 = C1. It
follows that H1

∼= Z. Finally, the kernel of d2 is the cyclic subgroup of Z2 generated by (1,−1), so
H2 = Z2

∼= Z.

Example 5.35. Take X = S2. Pick the CW structure having two cells in each degree ≤ 2. Here
each attaching map Sn−1 −→ Xn−1 is an identity map. Write x1 and x2 for the vertices and e1

and e2 for the edges. We have d1(ei) = x2 − x1. Similarly, we have d2(fi) = e1 − e2. The resulting
chain complex is

Z2
(

1 1
−1 −1

)
// Z2

(
−1 −1
1 1

)
// Z2

Here, the differential d1 has image the subgroup generated by (−1, 1), so H0
∼= Z2/(−1, 1) ∼= Z.

The kernel of d1 is the subgroup generated by (1,−1), which is the image of d2, so H1 = 0. The
kernel of d2 is again the subgroup generated by (−1, 1), so that H2

∼= Z.
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Mon, Apr. 23

In the examples on Friday, we saw that it did not matter which CW structure on S2 we chose.
In each case, we got the same answer, and these answers also agreed with the singular homology
groups.

Theorem 5.36. Let X be a space equipped with a choice of CW structure. Then

Hcell
n (X) ∼= HSing

n (X)

for all n.

Since the right-hand side does not depend on any choice of CW structure, the left-hand side
must not either.

We do not give the proof (see Hatcher, Theorem 2.35). The idea is to first recognize that

HSing
n (X) ∼= HSing

n (skn+1X). Then we have

HSing
n (X) ∼= HSing

n (skn+1X)� HSing
n (sknX) −→ HSing

n (sknX)/skn−1X) ∼= Ccelln (X).

You show that this map lands in the subgroup Zcelln (X) and induces an isomorphism to the quotient
Zcelln (X)/Bcell

n (X).

Example 5.37. Take X = T 2. The standard cell structure we have used has a single 0, two 1-cells
a and b, and a single 2-cell e attached via aba−1b−1. Since there is a single 0-cell, this means that
automatically d1 = 0. To calculate d2(e), we wish to calculate the coefficient in front of a and b.
For a, we must compose the attaching map aba−1b−1 with the projection onto the circle a. This
means all of the b’s are sent to 0, so in the end we have aa−1 = 0. The same goes for b, so d2 = 0.
The chain complex C∗(T

2) is

Z 0−→ Z2 0−→ Z.
Since all differentials are zero in C∗(T

2), it is immediate that

H0(T 2) ∼= Z, H1(T 2) ∼= Z2, H2(T 2) ∼= Z.

Example 5.38. (torus, second approach) Consider the CW
structure on T 2 as given in the picture to the right. The
resulting chain complex is

Z2

(
1 −1
1 −1
−1 1

)
// Z3 0 // Z

We read off right away that H0(T 2) ∼= Z. Then

H1(T 2) = Z3/ im(d2) = Z3/Z(1, 1,−1) ∼= Z2.

a a

b

b

c

f

e

For the last isomorphism, note that since (1, 1,−1) ∈ Z3 is linearly independent from (0, 1, 0) and
(0, 0, 1), we can take these three elements as generators of the group Z3. It follows that the quotient
is Z2. Finally,

H2(T 2) = ker(d2) = Z(1, 1) ∼= Z.

There are a few algebraic results that are quite helpful in doing these computations.

Theorem 5.39. (Fundamental theorem for finitely generated abelian groups) If A is a finitely
generated abelian group, then

A ∼= Zr ⊕ Z/n1 ⊕ · · · ⊕ Z/nk
for some non-negative integers r and k and positive integers n1,. . . , nk.
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Theorem 5.40. (Smith normal form) Let A be an n × k matrix with integer values. Then, by
using column and row operations, A can be reduced to

A ∼


n1 0 . . . 0

0 n2 . . .
...

...
...

...
...

0 0 0 0

 ,

where ni | ni+1. This is the Smith normal form for the matrix.

If a differential dn is represented by A, then you reduce A to normal form, and the kernel of dn
will be (isomorphic to) Zj , where j is the number of zero columns in the normal form.

Wed, Apr. 25

Example 5.41. (RP2) We have a CW structure with a single cell in dimensions 0, 1, and 2. The
attaching map for the 2-cell is γ2 : S1 −→ S1. It follows that the chain complex C∗(RP2) is

Z 2−→ Z 0−→ Z.

Thus H0(RP2) ∼= Z, H1(RP2) = Z/2Z, and H2(RP2) = 0.

Example 5.42. (Klein bottle, first version) Recall that we have a CW structure on K having a
single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation aba−1b. It
follows that C∗(K) is the chain complex

Z
(
0
2

)
// Z2 0 // Z

We read off immediately that H0(K) ∼= Z and that H2(K) = 0 since d2 is injective. The remaining
calculation is

H1(K) = Z2/Z(0, 2) ∼= Z⊕ Z/2Z.

Example 5.43. (Klein bottle, second version) Recall that we discussed a second CW structure on
K having a single 0-cell and 2-cell and two 1-cells. The 2-cell is attached according to the relation
c2d2. It follows that C∗(K) is the chain complex

Z
(
2
2

)
// Z2 0 // Z

We read off immediately that H0(K) ∼= Z and that H2(K) = 0 since d2 is injective. The remaining
calculation is

H1(K) = Z2/Z(2, 2) ∼= Z⊕ Z/2Z.
Here the isomorphism Z2/Z(2, 2) ∼= Z⊕ Z/2Z is induced by the map

Z2 � Z⊕ Z/2Z
(n, k) 7→ (n− k, k).

Example 5.44. (Orientable surfaces) We have a CW structure on Mg with a single 0-cell and 2-cell
and 2g 1-cells. The attaching map for the 2-cell is the product of commutators [a1, b1] . . . [ag, bg].
It follows that C∗(Mg) is the chain complex

Z 0−→ Z2g 0−→ Z.

So H0(Mg) ∼= Z, H1(Mg) ∼= Z2g, and H2(Mg) ∼= Z.
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Example 5.45. (Nonorientable surfaces) We have a CW structure on Ng with a single 0-cell and
2-cell and g 1-cells. The attaching map for the 2-cell is the product a2

1 . . . a
2
g. It follows that C∗(Ng)

is the chain complex

Z

(
2

.

.

.
2

)
// Zg 0 // Z

So H0(Ng) ∼= Z, H1(Ng) ∼= Zg/Z(2, . . . , 2) ∼= Zg−1 ⊕ Z/2Z, and H2(Ng) = 0. Again, the isomor-
phism Zg/Z(2, . . . , 2) ∼= Zg−1 ⊕ Z/2Z is induced by

Zg � Zg−1 ⊕ Z/2Z
(n1, . . . , ng) 7→ (n1 − ng, n2 − ng, . . . , ng−1 − ng, ng).

Remark 5.46. According to the previous examples and our Proposition 3.52, a compact, connected
surface M satisfies H2(M) ∼= Z if M is orientable and satisfies H2(M) = 0 if M is not orientable.

So, for a surface, H2 tells us about orientability.

We have seen that cellular homology tends to be quite computable, so what is the drawback?
One major drawback is functoriality. Recall that any map of spaces f : X −→ Y gave us a map on
singular homology. For cellular homology, this is only true if the map is compatible with the CW
structures, in the sense that f carries the n-skeleton of X into the n-skeleton of Y for all n. Such
maps are called cellular, and this is a very strong condition. In fact, any map is homotopic to a
cellular map, but in general finding a cellular approximation to a given map is quite nontrivial.

Example 5.47. Now let’s consider RPn for n > 2. The cellular chain complex is

Cn
1+(−1)n// Cn−1

// . . .
2 // C1

0 // C0

Z Z Z Z
To understand the differential dk, it suffices to understand what it does to the k-cell ek. The
attaching map for this k-cell is the double cover Sk−1 −→ RPk−1. Then dk(ek) = nkek−1, where
nk is the degree of the map

Sk−1 −→ RPk−1 −→ RPk−1/RPk−2 ∼= Sk−1.

To visualize this, think of RPk−1 as the quotient of the northern hemisphere of Sk−1 by a relation
on the boundary. Then RPk−2 is the quotient of the boundary, so the quotient RPk−1/RPk−2 is the
northern hemisphere with the equator collapsed. The map Sk−1 −→ RPk−1/RPk−2 factors through
Sk−1/Sk−2 ∼= Sk−1 ∨ Sk−1. The map on the nothern hemisphere Sk−1 −→ RPk−1/RPk−2 ∼= Sk−1

is the identity. On the other hand, the map on the southern hemisphere can be identified with
the map (x1, . . . , xk) 7→ (−x1, . . . ,−xk). This is a homeomorphism, so the question is whether it
is homotopic to the identity, in which case the map on this hemisphere corresponds to 1, or it is
not, in which case the maps corresponds to −1. But this map is a sequence of k reflections, each
of which has determinant −1. So the map has determinant (−1)k. This number then agrees with
the degree of the map, and we find that nk = 1 + (−1)k.

It follows that in degrees less than n we have

H2i(RPn) = 0, i > 0, H0(RPn) = Z, H2i+1(RPn) = Z/2.

To determine Hn(RPn), we consider dn : Cn −→ Cn−1. If n is even, then dn is injective, so
Hn(RPn) = 0. On the other hand, if n is odd, then dn = 0, so that Hn(RPn) ∼= Z.
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The Euler characteristic computation according to homology is now

χ(RP2k) = 0 + 0 + · · ·+ 0 + 1 = 1, χ(RP2k+1) = 1 + 0 + 0 + · · ·+ 0 + 1 = 2.

Recall that we mentioned that for an n-manifold, the top homology group Hn(M) is either Z or
0, depending on whether the manifold is orientable or not. The above shows that RPn is orientable
if and only if n is odd (n ≥ 1).

Fri, Apr 27

Example 5.48. We can also consider X = CPn. But this turns out to be much easier, since CPn
only has cells in even degrees. There can’t possibly be any nonzero differentials! We then read off
that

Hk(CPn) ∼=

{
Z 0 ≤ k ≤ 2n & k even

0 else.

We also have χ(CPn) = n+ 1, and CPn is always orientable.

Recall that we talked about the Euler characteristic for surfaces. For any chain complex C∗, we
define the Euler characteristic of C∗ by χ(C∗) =

∑
(−1)i rank(Ci) (when this sum makes sense).

Recall that the rank of a free abelian group is the maximal number of linearly independent elements.
For example, if C ∼= Zr ⊕A, where A is finite, then rankC = r.

Lemma 5.49. Suppose given a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

of finitely-generated abelian groups. Then

rank(B) = rank(A) + rank(C).

Proof. We show that rank(B) ≥ rank(A)+rank(C) and leave the other direction as an exercise. Let
a1, . . . , ar be a maximal linearly independent set in A and c1, . . . , cs a maximal linearly independent
set in C. Since g is surjective, we can lift these elements to c̃i ∈ B. We claim that the collection
{f(ai)} ∪ {c̃j} is linearly independent. Thus consider an equation∑

i

mif(ai) +
∑
k

nk c̃k = 0.

By applying g, we get ∑
k

nkck = 0.

Since the ck’s are independent, we conclude that nk = 0 for all k. Since f is injective, we now learn
that ∑

i

miai = 0.

But since the ai’s are independent, we learn that mi = 0 for all i. This shows that {f(ai)} ∪ {c̃j}
is independent. �

Proposition 5.50. For any chain complex, we have χ(C∗) = χ(H∗(C∗)).

Proof. The key is to note that we have short exact sequences

0 −→ Zi −→ Ci −→ Bi−1 −→ 0.

and
0 −→ Bi −→ Zi −→ Hi −→ 0.
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By a Lemma 5.49, these tell us that

rank(Ci) = rank(Zi) + rank(Bi−1)

and
rank(Zi) = rank(Bi) + rank(Hi).

So ∑
i

(−1)i rank(Ci) =
∑
i

(−1)i(rank(Bi) + rank(Hi) + rank(Bi−1)).

This is a telescoping sum, and we end up with χ(H∗). �

As an example, we talked about the homology of RP2 earlier. We saw this was

H0(RP2) ∼= Z, H1(RP2) = Z/2, H2(RP2) = 0.

Since the standard model for RP2 has no cells above dimension 2, there is of course no homology
in higher dimensions. The Euler characteristic computation according to homology is

χ(RP2) = rank(Z)− rank(Z/2) = 1.

Proposition 5.50 tells us that the Euler characteristic only depends on the homology of the space,
not on the particular cellular model.
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