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1. Introduction

Recall from the previous talk that we have our category pointed A
1-homotopy category

Ho
A1,•(k) over a field k. We will often refer to an object of our category (i.e. a simplicial

sheaf on Smk) simply as a space.

2. The Stable A
1-homotopy category of T -spectra

Definition 1. A T -prespectrum E is a sequence En of pointed spaces together with struc-
ture morphisms σn : En ∧ T → En+1 for all n. A morphism λ : E → F of T -prespectra is a
sequence of maps λn : En → Fn commuting with the structure morphisms. We will denote
the category of T -prespectra by PSpT (k).

Example 1. For any based space X , we have the suspension prespectrum Σ∞(X ) of X given
by Σ∞(X )n = X ∧T (n). The structure morphisms are simply the association isomorphisms.

Let p, q ∈ Z. For any E ∈ PSpT (k) and U ∈ Smk, we define the stable homotopy group
of degree p and weight q to be the presheaf of groups given on some U ∈ Smk by

πp,q(E)(U) = colim
r

[Sp−q+rs ∧G
q+r
m ∧ (U+), En].

The above definition relies, of course, on the fact that S1
s ∧Gm ' T .

Definition 2. A morphism f : E → F in PSpT (k) is said to be a stable A
1-weak equivalence

if it induces an isomorphism of presheaves of stable homotopy groups

πp,q(E)
∼=−→ πp,q(F )

for all p, q ∈ Z. The A
1 stable homotopy category SH(k) is then obtained from PSpT (k)

by inverting the stable A
1-weak equivalences.

As in the classical case, SH(k) is a triangulated category (the triangulation is given by
simplicial suspension), and T -suspension induces an equivalence on SH(k). The adjoint
of T -suspension is given by ΩT . This functor ΩT is defined levelwise; that is, (ΩTE)n =
ΩT (En). It remains to describe the T -loops functor on spaces. But this is of course simply
the internal hom Hom(T,En) of pointed presheaves given on some U ∈ Smk by

ΩT (En)(U) = Hom(T,En)(U) = Hom(T ∧ U+, En).

One of the technical details needed in the proof that these induce an adjoint equivalence is
the following lemma of Voevodsky:

Lemma 1. The cyclic permutation of factors in T 3 induces the identity map in Ho
A1,•(k).
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Proof. Recall from last time that, on the level of Nisnevich sheaves, we have an isomorphism
T 3 ∼= A3/(A3 − 0). Now we have an action of Gl3 on A

3, and we have a map

(Gl3)+ ∧A3/(A3 − 0)→ A3/(A3 − 0).

The cyclic permuation of factors on T 3 corresponds to the cyclic permutation of coordinates
on A3, and this automorphism comes from Sl3 ⊂ Gl3. But now recall that, over a field,
Sln = En; that is, Sln is generated by elementary matrices. Given any elementary matrix
Ei,j(α), there is an obvious A

1-path in Sln to the identity, namely t 7→ Ei,j(tα). This implies
that any automorphism of A

n coming from Sln is the identity in the homotopy category. �

In fact, if we take any based space Y which is (some suspension of) a smooth scheme,
we can form the category of Y -spectra, and the resulting stable homotopy category will be
triangulated if Y satisfies the above lemma. In particular, this works for Y = S1

s or Gm.

3. Good categories of spectra

The constructions of good categories of spectra have analogues in the motivic world. In
particular, Rick Jardine has developed the theory of motivic symmetric spectra, and Po Hu
has given a theory of S-modules. We will discuss these briefly.

3.1. Symmetric Spectra
Definition 3. A symmetric T -spectrum is a T -prespectrum E as defined above together
with symmetric group actions Σn ↪→ Hom(En, En) such that the composite structure maps
En ∧ T∧k → En+k are Σn × Σk-equivariant.

An obvious example of a symmetric spectrum is the sphere spectrum Σ∞T S
0. We will see

that the Eilenberg-MacLane spectrum is also naturally a symmetric spectrum.
Just as in the topological case, we can then define a smash product of two symmetric

spectra E and F . First, if we forget about the structure maps, then a symmetric T -
spectrum is just a symmetric sequence of based spaces. There is an obvious ”external”
tensor product of symmetric sequences: (E ⊗ F )(m,n) = Em ∧ Fn. One then obtains an
internal tensor product by left Kan extension along (m,n) 7→ m+n. Note that the structure
of a symmetric T -spectrum E is just a map mE : E ⊗ Σ∞S0 → E of symmetric sequences.

Finally, the smash product E ∧ F is defined as the coequalizer of symmetric sequences

E ⊗ F ⊗ Σ∞S0 //
// E ⊗ F // E ∧ F,

where we coequalize the maps 1E ⊗mF and mE ⊗ 1F ◦ 1E ⊗ τ .
This construction now gives a symmetric monoidal structure on the category of motivic

symmetric spectra. Moreover, Jardine has put a model structure on this category which
gives a homotopy category equivalent to SH(k).

3.2. S-modules
To define S-modules, one needs to work with coordinate-free spectra; that is, one works
with spectra indexed over finite-dimensional subspaces of some infinite-dimensional real
inner product space. In the motivic context, there is generally no such universe on which to
index spectra. Hu has to do quite a bit of work to circumvent this difficulty. In particular,
she indexes her spectra on subspaces of finite codimension inside some infinite dimensional
k-vector space.
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There is not much trouble in defining the spaces of the linear isometries operad; one
essentially defines these using limits and colimits of Stiefel varieties. The twisted half-
smash product also takes quite a bit of work to construct, but once these tools are in place,
almost everything simply carries over from EKMM. Hu then puts a model structure on this
category of S-modules and shows it to give the same homotopy category.

4. Examples

Given any spectrum E, we obtain a cohomology theory on our category of spaces by setting

Ep,q(X) = [Σ∞T X+, S
p−q
s ∧G

q
m ∧E].

We list below a few examples of spectra which give rise to cohomology theories of interest.

4.1. Eilenberg-MacLane spectrum
What should the Eilenberg-MacLane spectrum be in this context? In topology, the
Eilenberg-MacLane spectrum HZ is given by (HZ)n = K(Z, n). The structure maps
ΣK(Z, n)→ K(Z, n+ 1) are given by the adjoints of equivalences K(Z, n)→ ΩK(Z, n+ 1).
To construct Eilenberg-MacLane spaces, we can for example use the Dold-Kan equivalence
between simplicial abelian groups and nonnegative chain complexes.

Unfortunately, it is not so obvious how to construct Eilenberg-MacLane spaces here.
There is another way of constructing K(Z, n)’s in topology, by use of the Dold-Thom the-
orem.

Theorem 1 (Dold-Thom). For a pointed CW complex X, there is a weak equivalence

Symm∞(X, ∗)+ '
∏
n≥0

K(Hn(X), n),

where Symm∞(X, ∗) denotes the infinite symmetric product of X and the + denotes the
group completion.

Proof. There are a number of ways to prove this. One way is to simply show that the
functor (X, ∗) 7→ π∗(Symm∞(X, ∗)+) satisfies the axioms of a reduced homology theory
and to note that it certainly satisfies the dimension axiom.

Alternately, Symm∞(X, ∗)+ is some kind of free abelian group functor on spaces. There
is a canonical map

N[S•(X)]→ S•(Symm∞(X, ∗)),
where N[−] : sSet → sAbMon is the free abelian monoid functor on simplicial sets and
S• = Hom(∆•,−) is the singular set functor. It is not difficult to see that for any simplicial
set K, the map |N[K]| → Symm∞(|K|) is a weak homotopy equivalence, and it follows that
the above map is a weak equivalence. This map then extends via naive group completion
to a weak equivalence

Z[S•(X)]→ S•(Symm∞(X, ∗))+

of simplicial abelian groups. On the other hand, |S•(Symm∞(X, ∗))+| is a (topological)
group completion of |S•(Symm∞(X, ∗))| ' Symm∞(X, ∗). It follows that we can pull the
+ inside to get a weak equivalence

Z[S•(X)]→ S•(Symm∞(X, ∗)+).

But now, by the Dold-Kan equivalence, we have an isomorphism

πi(Z[S•(X)]) ∼= Hi(N(Z[S•(X)])) = Hi(X; Z),

where N : sAbGp→ Ch≥0(Z) is the normalized chain complex functor. �
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Note that applying this theorem to the case where X is a Moore space of type M(G,n)
implies that Symm∞(X) is a K(G,n).

Now we need some analogue of the infinite symmetric product in our category of spaces,
and it turns out that the right thing to use is the ”free presheaf with transfers” functor

Ztr : Pre∗(Smk)→ AbPre(Smk).

We define this on a smooth scheme X by setting Ztr(X)(Y ) to be the free abelian group on
cycles Z ⊂ Y ×X which are finite and surjective over Y . We then define Ztr on Pre∗(Smk)
to be the unique colimit-preserving extension.

Let Z
eff
tr (X) be the subpresheaf defined by taking the free abelian monoid rather than

the free abelian group. The following theorem justifies Ztr as a replacement for the infinite
symmetric product:

Theorem 2 (Suslin-Voevodsky). Let char(k) = p. There is an isomorphism

Z
eff
tr (X)(S)[1/p]

∼=−→ Hom

(
S,
∞∐
n=0

Sn(X)

)
[1/p]

for any normal, connected S.

Note that there is a canonical map X → Ztr(X), and we have product maps Ztr(X) ∧
Ztr(Y )

µ−→ Ztr(X ∧ Y ) given by external products of cycles.
Now we are ready to define our Eilenberg-MacLane spectrum. We set

K(Z, n) = Ztr(T∧n) ∼= Ztr(An)/Ztr(An − 0).

The structure maps are defined as

K(Z, n)∧T → Ztr(An)/Ztr(An−0)∧Ztr(A1)/Ztr(A1−0)
µ−→ Ztr(An+1)/Ztr(An+1−0) = K(Z, n+1).

That this Eilenberg-MacLane spectrum is an Ω-spectrum (the adjoints to the structure
maps are equivalences) is given by Voevodsky’s Cancellation Theorem.

Remark 1. The cohomology theory represented by this spectrum is known as motivic
cohomology, and we are to think of it as an analogue of ordinary cohomology. On the other
hand, one should not take the analogy too seriously: motivic cohomology does not satisfy
the dimension axiom. In fact, the motivic cohomology of Spec(k) is mostly unknown. We
have that Hp,q(Spec(k),Z) = 0 if either

• p > q or
• q < 0 or
• q = 0 and p 6= 0 or
• q = 1 and p 6= 1.

Moreover, H0,0(Spec(k),Z) = Z, H1,1(Spec(k),Z) = F×, and more generally
Hn,n(Spec(k),Z) = KM

n (k).

4.2. Algebraic K-theory spectrum
Let BGln = Gr(n,∞) be the Grassmannian (defined as the colimit of the schemes
Gr(n,m)). Then let BGl = colimnBGln. The algebraic K-theory spectrum K is given
by Kn = BGl and structure morphisms BGl ∧ T ' BGl ∧ P

1 → BGl are given by the
classifying map for the “Bott element” 1 −H. (H is the dual of the canonical line bundle
on P

1.)
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4.3. Algebraic Cobordism spectrum
The Algebraic Cobordism spectrum is defined in almost complete analogy to MU . As
above, we have the classifying space BGln, and over this space we have the universal n-plane
bundle En. We then define the algebraic cobordism spectrum MGl by MGln = T (En). The
structure maps are defined as follows:

MGln ∧ T = T (En) ∧ T ∼= T (En ⊕O1)
T (λn)−−−−→ T (En+1) = MGln+1,

where λn : En ⊕O1 → En+1 is the classifying map of the bundle.

5. πs0(S0)

First we need to introduce the Grothendieck-Witt ring of a field k, where the characteristic
of k is not 2. Consider the free abelian group on all isomorphism classes of pairs (V, µ),
where V is a finite-dimensional k-vector space and µ is a nondegenerate symmetric bilinear
form on V . Then identify (V ⊕ V ′, µ ⊕ µ′) with the sum in the group. This becomes a
commutative ring, with multiplication given by tensor product.

However, if the characteristic of k is not equal to 2, then every symmetric bilinear form is
diagonalizable, and so every class (V, µ) splits into a sum of one-dimensional pieces (Vi, µi).
Of course, each µi is just given by an element of k×. Thus GW (k) is generated as an algebra
by symbols 〈u〉, with u ∈ k×. Change of basis by multiplying by a ∈ k× shows that we have
a relation 〈u〉 = 〈ua2〉.

Now given u ∈ k×, we want to construct an element of [S0, S0] (this is the endomorphism
ring of the sphere spectrum Σ∞T Spec(k)+). An element of k× can be regarded as a map
u : Spec(k) → Gm. We also have the “Hopf map” η : Gm → S0 given as follows. We have
the classical Hopf map A

2 − 0→ P
1. But P

1 ' T and A
2 − 0 ' T ∧Gm by purity. Now we

define an element in [Gm,Gm] by 〈u〉 = 1 + η · u.
It turns out that the simplicial suspension of this map, as an element of [P1,P1] has the

simpler description as the map [x0 : x1] 7→ [x0 : ux1]. Either way, we obtain an element of
[S0, S0]. Of course, one must check that this is well defined as a map from GW (k). The
Hopkins-Morel result is then

Theorem 3. If k is a perfect field, and char(k) 6= 2, the above map

GW (k)→ [S0, S0]

is an isomorphism.


