
WOMP 2004: CATEGORY THEORY

Bert Guillou and Haris Skiadas

Category theory has been around for quite some time now and pervades modern mathematics; it
is not really an area of mathematics so much as an area of meta-mathematics. It describes frameworks
in which mathematics can be, and usually is, done.

More than that, in many cases category theory has encouraged, or at least facilitated, a change
of perspective. When one studies mathematics, one often wants to study mathematical objects: sets,
groups, topological spaces, Lie groups, etc. In category theory, however, at least as much emphasis is
placed on maps between objects as on the objects themselves, and in many cases it turns out to be
much more fruitful to make the maps the center of focus.

Another great success of category theory has been to make ideas like “canonical” precise. It was
finally through the use of “natural transformations” that mathematicians were able to make this
notion rigorous.

We will try to go through some of the basic definitions and provide lots of examples to give a feel
for what categories can look like.

1 Categories

Definition. A category C is a collection of “objects”, denoted Ob(C ), together with, for each pair of
objects X, Y ∈ Ob(C ), a set Hom C (X, Y ) of “morphisms” which satisfies the following:

• For each X, Y, Z ∈ Ob(C ), there is a “composition” function

◦ : Hom C (Y, Z)×Hom C (X, Y )→ Hom C (X, Z).

We write g ◦ f or gf for ◦(g, f).

• For each X ∈ Ob(C ) there exists a distinguished element 1X ∈ Hom C (X, X) such that for any
Y, Z ∈ Ob(C ) and f ∈ Hom C (Y, X), g ∈ Hom C (X, Z) we have

1X ◦ f = f and g ◦ 1X = g.

• Composition is associative, i.e., h(gf) = (hg)f .

Remark. We often write C (X, Y ) for Hom C (X, Y ), and we often write X ∈ C for X ∈ Ob(C ).
Morphisms are often called arrows.
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Remark. A category C is called small if the collection Ob(C ) of objects forms a set.

Categories abound in mathematics. Here are just a few of the more common examples.

Example 1.

(a) 1: the trivial category. It has exactly one object, ∗, and exactly one morphism, 1∗.

(b) 0: the really trivial category. It has an empty set of objects and an empty set of morphisms.

(c) Set: the objects are sets and the morphisms are functions.

(d) FinSet: the objects are finite sets and morphisms are functions.

(e) Vectk, where k is a field: the objects are vector spaces over k and morphisms are k-linear
homomorphisms.

(f) (Vectk)f.d., where k is a field: the objects are finite-dimensional vector spaces and morphisms
are k-linear homomorphisms.

(g) Gp: the objects are groups and the morphisms are homomorphisms.

(h) AbGp: the objects are abelian groups and the morphisms are homomorphisms.

(i) ModR, where R is a commutative ring: the objects are R-modules and the morphisms are
R-module homomorphisms.

(j) Top: the objects are topological spaces and the morphisms are continuous maps.

(k) Top∗: the objects are pointed topological spaces (spaces with a distinguished base point) and
the morphisms are basepoint-preserving continuous maps.

(l) Let G be any group. We can then regard G as a category as follows: the category G has only
one object ?, and Hom G (?, ?) = G. Composition of morphisms is defined by the group operation
of the group G.

Most of the examples above are of the same flavor: they provide frameworks in which a mathe-
matician might want to work. On the other hand, there are other sorts of categories which are useful
to consider. For instance, consider the pictorial diagram

X
α−→ Y.

We can think of this as representing a category. The objects are “X” and “Y ”. There is a morphism
α from X to Y . This almost describes the category, but remember that in any category there must
be an identity arrow for each object. Thus we must throw in arrows 1X and 1Y . The last thing to
do is to describe how all of the arrows compose, but in fact there is no choice. Any time we want to
compose two arrows in this category, at least one of them is necessarily an identity arrow, and so we
know what the composition must be. Similarly, you can imagine what categories the diagrams

A← B → C and s ⇒ t

represent.
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Definition. Given a category C , a subcategory B ⊂ C is just what one would guess: the objects of
B form a subcollection of the objects of C ; for X, Y ∈ B the morphisms from X to Y are a subset
of the morphisms in C ; and the composition in B is the composition in C . We say that B is a full
subcategory if for all X, Y ∈ B we have Hom B(X, Y ) = Hom C (X, Y ).

Example 2. Of the categories we have already seen, AbGp, FinSet, and (Vectk)f.d. are full sub-
categories of Gp, Set, and Vectk, respectively.

Example 3. Given any category C , we can form a subcategory B ⊂ C that has the same objects
and such that the morphism from X to Y in B are exactly the isomorphisms from X to Y in C .
Note that this still defines a category since 1X is an isomorphism for all X and since isomorphisms
are closed under composition. Of course, such a subcategory B is usually not full.

For example, we have the category of topological spaces and homeomorphisms sitting inside the
category of topological spaces and continuous maps. This is certainly not full.

1.1 Iso’s, Mono’s, and Epi’s

In the categories we have described above, we know what it means for two objects to be “the same”.
In Set, this means that they are bijective; in Top, it means they are homeomorphic. In fact, all of
these fall under the general categorical notion of isomorphism:

Definition. Let f ∈ Hom C (X, Y ). We say that f is an isomorphism if there exists a morphism
g ∈ Hom C (Y, X) such that f ◦ g = 1Y and g ◦ f = 1X .

Exercise 1. Show that a function X → Y of sets is a bijection if and only if it is an isomorphism as
defined above.

Thus in Set, a morphism (function) is an isomorphism (bijection) if and only if it is both injective
and surjective. The notions of injections and surjections generalize to arbitrary categories, but it is
no longer true that the isomorphisms are the morphisms which are both injective and surjective.

Definition. Let f ∈ Hom C (X, Y ). We say that f is a monomorphism if for every Z ∈ C , the induced
map of sets

f∗ : Hom C (Z,X)→ Hom C (Z, Y )

is an injection( of sets). We say f is an epimorphism if

f∗ : Hom C (Y, Z)→ Hom C (X, Z)

is an injective map of sets for each Z ∈ C .

Exercise 2. Show that if g ◦ f is a monomorphism then so is f . Similarly, if g ◦ f is an epimorphism
then so is g. Conclude that any isomorphism is necessarily both a monomorphism and an epimorphism.
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Exercise 3.

(a) In Top, a map is a monomorphism if and only if it is injective and an epimorphism if and
only if it is surjective.

(b) In the category Haus of Hausdorff spaces and continuous maps, a map is a monomorphism if
and only if it is injective and an epimorphism if and only if it has dense image. Thus the inclusion
U ↪→ X of a dense subset is both a monomorphism and an epimorphism but not necessarily an
isomorphism.

(c) The ring homomorphism Z → Q is both a monomorphism and an epimorphism in Comm,
though it is not an isomorphism.

1.2 Under and Over-Categories

Definition. Let C be a category and C ∈ C any object. We form the category (C ↓ C) of objects
over C as follows: an object is an object D of C together with a given morphism D → C. If (D, f)
and (E, g) are objects over C, a morphism h : (D, f)→ (E, g) is defined to be a morphism h : D → E
which makes the following diagram commute:

D
h //

f   @
@@

@@
@@

E

g
��~~

~~
~~

~

C
Similarly, we define the category (C ↓ C ) of objects under C to have, as objects, objects D of C

with a morphism C → D; morphisms are defined analogously.

Example 4.

(a) Let ∗ ∈ Top be a one-point set. Then (∗ ↓ Top) is just Top∗, the category of pointed spaces.

(b) Let X be a topological space. We define VectX to be the category of vector bundles over X.

That is, an object is a vector bundle E
ξ−→ X, and a morphism is just a morphism of bundles:

E
λ //

ξ   A
AA

AA
AA

F

η
~~~~

~~
~~

~

X

Over and under-categories are examples where morphisms really become the central object of
study; indeed, the objects of this category are morphisms in the category C .

2 Functors

In this section, we will discuss functors, which are “maps between categories.”
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Definition. Let C be any category. We define the opposite category C op to be the category with the
same objects as C and with

Hom C op(X, Y ) := Hom C (Y, X).

That is, we merely switch all of the directions of the arrows in C . Composition in C op is induced
from composition in C . Note that if morphisms in C correspond to functions (with possibly extra
structure) then morphisms in C op will not correspond to functions.

Definition. Let C and D be two categories. A (covariant) functor F : C → D is the following data:
for each C ∈ C we have an object F (C) ∈ D , and for each arrow f ∈ Hom C (C,C ′) we have an arrow
F (f) ∈ Hom D(F (C), F (C ′)) such that

F (1C) = 1F (C) and F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor F : C → D is merely a (covariant) functor F : C op → D . Thus a covariant
functor is one which preserves the directions of the arrows, and a contravariant functor is one which
reverses the directions of the arrows.

Remark. If F : C → D is a covariant functor and f is an arrow in C , we often write f∗ for F (f). If
F is contravariant, we write f∗ for F (f).

Example 5.

(a) Let M ∈ ModR for some commutative ring R. Then M defines a functor Hom R(M,−) :
ModR →ModR defined on objects by Hom R(M,−)(N) = Hom R(M,N). If f : N → P is an
R-module homomorphism, f∗ : Hom R(M,N)→ Hom R(M,P ) is defined by f∗(ϕ) = f ◦ ϕ.

(b) As above, let M ∈ ModR for some commutative ring R. We can then define a functor
(−) ⊗R M : ModR → ModR defined on an object N to be N ⊗R M . Given a morphism
ϕ : N → P , we define ϕ⊗R M : N ⊗R M → P ⊗R M to be ϕ⊗ 1M . That is,

ϕ⊗R M

(∑
i

ni ⊗mi

)
:=
∑

i

ϕ(ni)⊗mi.

(c) Let Comm denote the category of commutative rings with unit. For any topological space
X, we denote by Γ(X) the set of continuous C-valued functions on X. Note that Γ(X) is a
commutative ring with unit, where the sum and product are defined pointwise. Then Γ defines a
contravariant functor Top→ Comm. If f : X → Y is a continuous map of topological spaces,
Γ(f) : Γ(Y )→ Γ(X) is defined by Γ(f)(λ) = λ ◦ f .

(d) For any n ≥ 1, Gln defines a functor Comm → Gp. On objects, Gln(R) is just the group
of n × n invertible matrices over the ring R. Given a ring homomorphism ϕ : R → S, Gln(ϕ)
is defined entrywise; that is, Gln(ϕ) takes a matrix over R with entries aij to the matrix over S
with entries ϕ(aij).

5



(e) There is a “forgetful” functor U : Gp → Set which takes a group to its set of elements
and which takes a homomorphism to the underlying function. Essentially, this functor takes
groups and “forgets” the extra group structure and remembers only the underlying set. There
is similarly a forgetful functor AbGp→ Set.

(f) In the example above, we saw functors which forget extra structure, but often there are
functors going in the opposite direction which build in the extra structure. Such functors are
called “free” functors. For example, there is the free abelian group functor F : Set → AbGp
defined on objects by

F (X) =
⊕
x∈X

Z.

An element of F (X) is a finite formal Z-linear combination of elements of X, and the group
operation is defined by (∑

x∈X

nxx

)
·

(∑
x∈X

mxx

)
:=
∑
x∈X

(nx + mx)x.

Given a function f : X → Y , F (f) is defined by

F (f)

(∑
x∈X

nxx

)
:=
∑
x∈X

nxf(x).

(g) Let G be a group; as we saw above, we can regard G as a category G with one object. Then
a functor F : G → Set is exactly the same data as a G-set, i.e., a set with an action of G.

(h) For those who have seen fundamental groups before, we have the functor π1 : Top∗ → Gp
which assigns to a space X with basepoint x the fundamental group of loops based at x,
π1(X, x). Given a basepoint-preserving map of pointed spaces f : X → Y , the homomor-
phism f∗ : π1(X, x)→ π1(Y, f(x)) is defined by sending the class of a loop α to the class of the
loop f ◦ α.

Exercise 4. Show that if M ∈ModR for some commutative ring R then Hom R(−,M) determines a
contravariant functor ModR →ModR.

Exercise 5. If G and H are groups regarded as categories, characterize functors Φ : G →H .

Exercise 6. There are also forgetful functors

Top→ Set, Top∗ → Top, ModR → AbGp, Comm→ AbGp.

In each of these cases there are “free” functors going in the opposite direction. What are they?
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Definition. A functor F : C → D is said to be faithful if for all C,C ′ ∈ C the function F (−) :
Hom C (C,C ′) → Hom D(F (C), F (C ′)) is injective; F is said to be full if each F (−) is surjective. We
say F is fully faithful if it is both full and faithul.

Example 6. If B ⊂ C is a subcategory, then the obvious inclusion functor i : B → C is faithful.
This functor is fully faithful if and only if B is a full subcategory.

Exercise 7. Show that the forgetful functors we have seen above are all faithful.

Exercise 8. Find examples of M and R such that (−)⊗R M is not full or not faithful.

3 Natural Transformations

We have described categories and functors, which are maps between categories. Now we will describe
natural transformations, which are maps between functors.

Definition. Let F,G : C → D be functors. A natural transformation η : F → G is a collection of
maps ηC : F (C)→ G(C), one for each C ∈ C , such that for any C,C ′ ∈ C and any f ∈ Hom C (C,C ′),
the following diagram commutes:

F (C)
F (f) //

ηC

��

F (C ′)

ηC′

��
G(C)

G(f) // G(C ′)

Example 7.

(a) Let M,N ∈ ModR for some commutative ring R and let f : M → N be an R-module
homomorphism. Then f defines a natural transformation η : (−) ⊗R M → (−) ⊗R N defined
by ηP = 1P ⊗ f : P ⊗R M → P ⊗R N . Similarly, f also defines a natural transformation
Hom R(−,M)→ Hom R(−, N).

(b) Let G be a group and X, Y be G-sets. As we saw above, we can regard X and Y as coming
from functors X ,Y : G → Set. Suppose that η : X → Y is a natural transformation. Since G
has only one object ?, and X (?) = X, Y(?) = Y , the definition of a natural transformation says
only that the following diagram commutes for each g ∈ G:

X
g∗ //

η?

��

X

η?

��
Y

g∗ // Y

Thus a natural transformation η : X → Y consists just of a map of sets η? : X → Y which
commutes with the G-action. This is exactly a map of G-sets.
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(c) Recall the functor Gln : Comm→ Gp from above. We define a new functor (−)× : Comm→ Gp
which takes a commutative ring R and gives R×, the units (invertible elements) in R. Note that
R× is a group under multiplication and that any ring homomorphism f : R → S induces a
group homomorphism f× : R× → S×. Now the determinant yields a natural transformation
det : Gln → (−)×; to see that this is natural, i.e., that each diagram

Gln(R)
Gln(f)//

detR

��

Gln(S)

detS

��
R× f× // S×

commutes, we need only note that the determinant of a matrix over any ring is given by a formula
not depending on the ring, so that we get the same answer whether we change coefficients before
or after calculating the determinant. Also, note that detR : Gln(R) → R× is required to be
a morphism in the category Gp, which is the condition that the determinant of a product of
matrices is the product of the determinants.

(d) Let k be a field. For any vector space V over k, we define the dual vector space

V ∗ := Hom k(V, k).

This is the vector space of linear functionals on V . In fact the assignment V 7→ V ∗ determines
a contravariant functor (−)∗ : Vectk → Vectk. Composing this functor with itself gives a
covariant functor (−)∗∗ : Vectk → Vectk which sends a vector space to its double dual.
Now fix v ∈ V . We define a function evalv : V ∗ → k by evalv(λ) = λ(v). This is in fact k-linear
and so determines an element of (V ∗)∗. But now the assignment v 7→ evalv can also be seen
to be k-linear, so we have a homomorphism eval : V → V ∗∗. This map is an isomorphism if
V is finite dimensional. Moreover, the homomorphisms V → V ∗∗ fit together to determine a
natural transformation of functors Id→ (−)∗∗. This is a precise version of the statement that a
finite-dimensional vector space is canonically isomorphic to its double dual.

Exercise 9. Verify that the map eval : V → V ∗∗ described above is natural. (First step: what does
it mean for eval to be natural?)

Remark. For finite-dimensional vector spaces, it is also true that V is isomorphic to V ∗, but to
construct such an isomorphism one must first choose a basis for V . Thus the isomorphism V ∼= V ∗

cannot be natural.

We saw that if we restrict ourselves to (Vectk)f.d., then eval determines a natural transformation
Id→ (−)∗∗ in which each map V → V ∗∗ is an isomorphism. More generally, a natural transformation
η : F → G between functors F,G : C → D is called a natural isomorphism if ηC : F (C)→ G(C) is an
isomorphism for each C ∈ C .

Definition. A functor F : C → D is called an equivalence of categories if there exists a functor
G : D → C and natural isomorphisms F ◦G ∼= IdD and G ◦ F ∼= IdC .
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There is also a notion of isomorphism of categories: a functor F : C → D is an isomorphism if
there is a functor going in the opposite direction such that both composites are exactly the identity
functor. However, this turns out to be much too strong in practice, and equivalence is a much more
useful notion.

Proposition 1. Let F : C → D be a functor. Then F is an equivalence if and only if F is fully
faithful and for each D ∈ D there exists C ∈ C such that F (C) is isomorphic to D.

Proof. (⇒). Suppose F : C → D is an equivalence. Thus there exists G : D → C and natural
isomorphisms η : G ◦ F → IdC and λ : F ◦G→ IdD . Now let D ∈ D . Then we have an isomorphism
λD : F (G(D)) ∼= D. It thus remains to show that F is fully faithful.

Let f, g ∈ Hom C (C,C ′), and suppose F (f) = F (g) ∈ Hom D(F (C), F (C ′)). We wish to show that
f = g. But since F (f) = F (g), it follows that G(F (f)) = G(F (g)). Now, by naturality, the following
diagram commutes for any h ∈ Hom C (C,C ′):

G(F (C))
G(F (h))//

ηC ∼=
��

G(F (C ′))

∼= ηC′

��
C

h // C ′

In particular, substituting in f and g for h, we get the same morphism at the top in the two cases.
We now have

f = ηC′ ◦G(F (f)) ◦ η−1
C = ηC′ ◦G(F (g)) ◦ η−1

C = g.

It follows that F is faithful.
Finally, let g ∈ Hom D(F (C), F (C ′)). We want to show that g = F (f) for some f ∈ Hom C (C,C ′).

We define f to be
f = ηC′ ◦G(g) ◦ η−1

C .

But we have a commutative diagram

G(F (C))
G(F (f))//

ηC ∼=
��

G(F (C ′))

∼= ηC′

��
C

f // C ′

,

so that f = ηC′ ◦G(F (f))◦η−1
C . Since ηC′ and ηC are isomorphisms, this implies that G(g) = G(F (f)).

But now we have already shown that any equivalence is faithful; in particular, G is faithful, so g = F (f)
as required. It now follows that F is full.

(⇐). Let F : C → D be fully faithful and suppose that for each D ∈ D there exists C ∈ C such
that F (C) is isomorphic to D. Now we choose at once, for each D ∈ D , an object CD ∈ C and an
isomorphism ϕD : F (CD)

∼=−→ D. We now define a functor G : D → C as follows. On objects, we set
G(D) = CD. Given any morphism f : D → D′, we define G(f) to be the unique morphism CD → CD′

such that F (G(f)) is the composite

F (CD)
ϕD−−→ D

f−→ D′ ϕD′−−→ F (CD′).
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Note that this makes sense because F is fully faithful. It is easy to see that G(1D) = 1CD
and that

G(g ◦ f) = G(g) ◦G(f). Thus G is in fact a functor.
It remains to define natural isomorphisms η : G ◦ F → IdC and λ : F ◦ G → IdD . Let C ∈ C .

Then G(F (C)) = CF (C) by the definition of G. We then define ηC : G(F (C))
∼=−→ C to be the unique

morphism such that
F (ηC) = ϕF (C) : F (CF (C))

∼=−→ F (C).

We are once again using the fact that F is fully faithful; this also implies that ηC is an isomorphism
since ϕF (C) is one. We must still check that this choice of η is natural, i.e., that each diagram

G(F (C))
G(F (f))//

ηC

��

G(F (C ′))

ηC′

��
C

f // C ′

commutes for each choice of C, C ′, and f . But since F is fully faithful, it suffices to check that the
diagram commutes after applying F . By the definition of G and η, the diagram becomes

F (CF (C))
F (G(F (g))) //

ϕF (C)

��

F (CF (C′))

ϕF (C′)
��

F (C)
F (f) // F (C ′)

.

This diagram commutes by the definition of F (G(F (f))).
The natural transformation is much easier to describe. We define λD : F (G(D)) = F (CD) → D

to simply be the isomorphism ϕD. Naturality requires each diagram

F (G(D))
F (G(f))//

ϕD

��

F (G(D′))

ϕD′

��
D

f // D′

to commute, but each such diagram commutes by the definition of G(f). This completes the proof.

Exercise 10. Let k be a field and let us define a category M = Matrk: this category has one
object for each nonnegative integer and Hom M (m,n) = Matn×m(k), the set of n ×m matrices over
k. There is a functor M → (Vectk)f.d. sending m to the vector space km and sending a matrix to the
corresponding linear transformation. This functor is an equivalence of categories.

4 Initial and terminal objects

In most of the categories mentioned above, there are certain objects that have special properties which
are easily expressible in terms of just the other objects and the morphisms, in other words only in
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terms of concepts that make sense in every category. In this section we’ll talk about some of these
objects.

Look for instance at the category of groups. The simplest group is the trivial group 1. One way
to think of 1 is as consisting of only one element, the identity. Another way though, more in touch
with the look we take on things in these notes, is to notice that for any other group G, there is always
exactly one morphism from 1 to G, namely the one sending the identity to the identity. No other
group has that property, something we’ll leave to you as an exercise.

Exercise 11. Show that if a group E has the property that for any group G there is exactly one
morphism E → G, then E consists only of the identity element.

Let’s now look at the category of rings with unit. We include in that the zero ring, in which case
0 = 1. One very important ring is the ring of integers, Z. Notice that Z has the same property: For
any other ring A, there is exactly one morphism of rings with unit from Z to A, sending 1 in Z to 1 in
A. Notice that the zero ring does not have this property, since 1 in the zero ring is the same as 0, and
hence under a ring homomorphism would have to be mapped to both 1 and 0 in A, which of course
will in general be different. Notice though, that if we had not required our ring homomorphisms to
take 1 to 1, then the zero ring would have been the one with the above property.

Now we can generalize this notion:

Definition. In a category C , an object e is called initial if it has the property that for any other
object A ∈ C there is exactly one morphism e→ A.

To show the usefulness of this, we’re going to prove once and for all that initial objects in a
category are all isomorphic to each other, and in fact with a unique isomorphism (This last statement’s
importance will probably not make sense to you for another couple of years, so don’t worry if it seems
strange right now).

Proposition 2. If e and e′ are initial objects in a category, then there is a unique isomorphism e→ e′.

Proof. Since e is an initial object, there is a (unique) morphism f : e→ e′. Since e′ is an initial object,
there is a morphism g : e′ → e. Then we get a morphism gf : e → e. We also have the identity
1e : e → e. Since there is exactly one morphism from e to another object, in particular from e to e,
we must have that gf = 1e. Similarly, we must have that fg = 1e′ . This means exactly that f is an
isomorphism.

Similarly, one could talk about terminal objects. These are objects e with the property that for
any other object A there is a unique morphism A→ e.

Exercise 12. In all the categories above, find (if any) what the initial and terminal objects are. Don’t
forget to prove that they are indeed initial objects and terminal objects respectively.
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As you will notice by doing the examples above, sometimes it happens that an initial object is
also a terminal one. In that case, it is called a zero object. If a category has a zero object, then
between any two objects A and B there is always a zero morphism, which arises simply by composing
the unique morphism A→ 0 with the unique morphism 0→ B. Notice that it is not a priori obvious
that two zero objects will give rise to the same zero morphism.

Exercise 13. Show that the zero morphisms corresponding to two different (but of course isomorphic)
objects are indeed the same morphism. In other words, even if there might be lots of different zero
objects, there is always exactly one zero morphism.

You might ask, how is it possible that there will be two zero objects? Well, think for instance of
the category of vector spaces. Then there are lots of spaces with only one element. For instance, the
vector space consisting of 0 ∈ R. Or another one is the vector space consisting of (0, 0) ∈ R2. These
two are of course isomorphic, but they are not the same. But the zero morphism between two vector
spaces is unique, because it takes any vector in the source space to the zero element of the target
space.

Exercise 14. Does a functor of categories have to take an initial/terminal/zero object to an ini-
tial/terminal/zero object? Prove or provide a counterexample or two.

5 Products, Kernels and other limits

One of the first and simplest accomplishments of category theory is to unify certain constructions that
are similar across different categories. This is what we did above with the notions of initial, terminal
and zero objects. Take a minute to ask yourselves, what other constructions are there that you’ve
seen repeat themselves across different categories?

We are going to provide some more answers in this section. One typical construction is the
following. Given two groups G, H we can construct their product G×H. What properties does this
product have? Well, first of all, it comes with two morphisms p1 : G×H → G and p2 : G×H → H.
But so do lots of other groups, for instance any subgroup of G ×H. In fact, there are probably lots
of groups that come equipped, or that could be equipped, with morphisms to G and H. What is so
special about the product? What’s special about it is that it satisfies a “universal property”, which
makes it the best possible group with morphisms to G and H:

Definition. Given two objects A,B, an object C together with two morphisms p1 : C → A, p2 : C →
B (called the projections) is called a product of A and B, and is denoted by A × B, if for any other
object D and morphisms q1 : D → A and q2 : D → B there is exactly one morphism g : D → C such
that p1g = q1 and p2g = q2.

12
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This may sound like a very weird condition at first, but it turns out to be pretty useful, and
not so weird after all. Basically it says that the object C captures exactly the information of giving
morphisms to A and B. It says that giving a pair of morphisms to A and to B is exactly the same as
specifying a morphism to C. It would of course be really bad if there were essentially different objects
with this property.

Exercise 15. Given two objects A,B, assume that C and D are both products of A and B. Show
that there is a unique isomorphism g : C → D that commutes with the projections (i.e. with the
notations above, q1g = p1 and q2g = p2).

Similarly there is the notion of a co-product, which comes with morphisms from A and B, and
such that for any other object with morphisms from A and B there is a unique homomorphism from
the co-product to those other objects that commutes with the injections (the morphisms from A,B).

Exercise 16. Check that in the category of sets, the disjoint union of two sets is their co-product.
Examine what happens in the other examples of categories.

Notice that we could define the product or co-product of more than two, in fact even infinitely
many objects. In many cases, it happens that the products and co-products (at least when there are
finitely many terms involved) are isomorphic objects. We’ll come back to that later.

Another important construction that appears in lots of algebraic objects is that of a kernel. Recall
that a kernel of a morphism f : A→ B is simply the subset of elements a ∈ A that map to zero under
f . Notice that we didn’t really specify what kinds of object A and B are, and the point is that it
doesn’t really matter. The definition is the same. So we should probably be able to phrase it using
the notions of category theory. In fact this is possible: Assume A and B are objects in a category
with a zero object, and f a morphism in that category. Then a kernel K for f is an object together
with a morphism i : K → A, such that fi = 0 and for any other object L and morphism j : L → A
with fj = 0 there exists a unique morphism g : L→ K such that ig = j.

K
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""i // A
f // B

L

∃!

OO�
�
� j

>>~~~~~~~~
0

??
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Exercise 17. Show that in the category of vector spaces, the familiar notion of a kernel agrees with
this one.

Exercise 18. Formulate and prove the statement that two kernels for the same morphism are unique
up to unique isomorphism.

Exercise 19. This is possibly a hard one, but worth thinking about. Given a category C with a zero
object, objects A,B and a morphism f : A→ B, we construct a new category as follows: The objects
of the new category are all morphisms g : C → A such that fg = 0. One could more precisely say that
the objects are the pairs (C, g). A morphism from g : C → A to h : D → A is a morphism s : C → D
such that hs = g.

1. Show that this is indeed a category.

2. Show that a kernel for f is the same thing as a terminal object in this category.

3. Explain (or at least convince yourselves) that this shows in particular that a kernel is unique up
to a unique isomorphism.

There are a number of similar constructions which we’ll simply mention by name here: co-kernels,
equalizers and co-equalizers, images and co-images.

In general the prefix “co-” means that to get the definition for the “co-” object you simply need
to reverse the direction of all the arrow in the original definition. (So an initial object could also be
called co-terminal).

Both products and kernels are special cases of a more general construction called a limit. This is
a bit advanced, so we will only talk about it briefly.

The idea is that you start with a diagram, which just means a bunch of objects from your category,
and maybe a couple of maps between them. For instance in the case of the product, the relevant
diagram will be simply the two objects A,B that you want to take the product of, and no maps. In
the case of the co-kernel of the morphism f : A→ B, the relevant diagram consists of the objects A,B
and the two morphisms f and 0 : A→ B. We’ll call the diagram ∆. It is really just a subcategory of
your category. Given such a diagram ∆, we say that an object L is a limit of the diagram, if it comes
with morphisms δA : L→ A, one for each object in ∆, such that:

1. For every morphism f : A→ B in ∆, we have fδA = δB.

2. For every other object C together with morphisms εA : C → A for each A ∈ ∆, such that
fεA = εB for each f : A→ B in ∆, there is a unique morphism G : C → L such that δAG = εA
for all A ∈ ∆.

A

f
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C

εA ..
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εB //

L
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The idea again here is that the object L, the limit, captures in the best possible way all the information
of “morphisms to the objects in ∆ from another object that commute with the morphisms in ∆”. For
completeness, note that part of the data of the limit are also the morphisms δA. They too are given.

Exercise 20. Try to understand why the kernel of a map is indeed the limit of the diagram described
above.

One could of course talk about co-limits too. Co-kernels and co-products are examples of co-limits.

6 Universal properties and adjoint pairs

We already talked about forgetful functors and free functors in previous sections. Here, among other
things, we will relate the two.

Recall that given a set X, one can construct the free abelian group on X, denoted F (X). This
groups has the property that it comes equipped with a set map X → F (X), and for any other abelian
group G and any set map X → G, there is a unique group homomorphism F (X)→ G that commutes
with these set maps.

Exercise 21. Show that the free group as defined earlier does indeed satisfy the above definition.

In some sense, F (X) is the “best possible” abelian group corresponding to the data of the set X.
Any phrase that is like the one above is called a universal property. To be more precise, starting with
two categories C and D , a functor G : C → D and an object X ∈ D , we say that an object K ∈ C
together with a morphism g : X → G(K) is a universal object for the pair (G, X), if for any object
L ∈ C and morphism h : X → G(L) there is a unique morphism i : K → L such that G(i)g = h.

This is all very abstract, so let’s see what this means in the above case. There, C is the category
of abelian groups, D is the category of sets, and G = U is the forgetful functor, that takes a group
to the underlying set. Then all the above says is that given a set X we can construct a group A,
which we called F (X) above, and a morphism of sets X → G(A), such that for any other group
B and morphism of sets X → G(B) there is a unique morphism of groups A → B, such that the
corresponding morphism of sets G(A)→ G(B) commutes with the maps from X. In other words, the
free group on a set of generators is an example of a universal object. It is a good idea to check that
you understand how the formulations above are the same.

Continuing in the same example, recall that the free group construction was actually a functor.
This is in fact true more generally, in the sense that if we keep the functor G above fixed, and every
object in D above had a universal object, then we can arrange it so that we get a functor F : D → C .
Instead of proving this in general, we will explain what it means in the case of the pair of functors
(F,U).

One way to formulate the relationship between F and U above is that, given a set X and a
group G, then there is a correspondence between the set maps from X to U(G) and the set of group
homomorphisms from F (X) to G, in fact those two sets are isomorphic. The general definition is as
follows:
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Definition. We say that the pair of functors F : C → D and G : D → C is an adjoint pair, if for any
X in C and A in D there is an isomorphism of sets between Hom C (X, G(A)) and Hom D(F (X), A)
that is natural in both X and A, i.e. it behaves as one would expect when we consider a morphism
f : X → Y etc. (A good exercise would be to try and make sense of that. The point is that you
don’t want the two sets to just be isomorphic, any two sets with the same number of elements are
isomorphic. You want to somehow express the fact that there is a natural way to identify the two
sets, not an ad hoc way). If the pair (F,G) is an adjoint pair, then F is called a left adjoint, and G a
right adjoint.

In our (F,U) example above, the naturality discussed above is expressed in some sense by the
fact that X is a subset of F (X), and a homomorphism F (X) → G corresponds to its restriction
X → U(G), (in other words it’s the most natural map you could think of. You didn’t need to make
any extra assumptions.)

There are many examples of adjoint pairs of functors, so we will just mention a couple and let
you work the details yourselves: (note that the pair appears in a particular order. If you consider the
functors in the opposite order, it might (and probably won’t) be an adjoint pair. A functor might be
in two pairs of adjoint functors though, once on the left and once on the right.)

• Almost all forgetful functors have a “free” functor as left adjoint (i.e. the pair (F,U) is an
adjoint pair), e.g. free group, free abelian group, free algebra, free module etc.

• There is a forgetful functor from C-vector spaces to R-vector spaces, forgetting extra structure.
It has a left adjoint, which is extension by scalars.

• The forgetful functor from abelian groups to groups has as left adjoint the abelianization functor,
which associates to each group its abelianization, i.e. the group obtained by taking the quotient
with respect to the normal subgroup generated by all “commutators” aba−1b−1. (Does it have
a right adjoint?)

7 Additive categories

You might have noticed that lots of examples of categories have some extra structure to their sets of
morphisms that we’ve been ignoring. For instance, we can add morphisms of abelian groups with the
same source and target. Same thing with linear transformations. One could define this in general:

Definition. An additive category is a category with a zero object and has products for any two objects
in it, which has the extra property that all the hom-sets Hom (A,B) have the structure of an abelian
group in such a way that the zero morphism is in fact the zero element of this group, and composition
of functions is bi-additive.

This should not be surprising by now. Notice that we don’t simply assume that the hom-sets can
be equipped with a group structure, we actually equip them with one. It is part of the data.
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Now, assume that X, Y are two objects in a category with a zero object, and assume that the
product X×Y and the coproduct XqY exist. We will now describe a natural morphism from XqY
to X × Y . Notice that in order to get such a morphism, we would simply need to get morphisms to
X × Y from X and from Y . To get a map from X to X × Y , we would need to provide morphisms
from X to X and to Y . But we can take the identity 1X : X → X and the zero morphism 0 : X → Y .
These two give us a morphism X → X × Y . Similarly we get a morphism Y → X × Y , and those two
together give us the desired morphism X q Y → X × Y .

We will now show that in an additive category, this is actually an isomorphism. In fact, we’ll try
to describe its inverse. For this, let us first set up some notation. Let’s call i, j the two maps from
X, Y to X q Y respectively, and p, q the two maps from X × Y to X, Y respectively. Also, let’s call
I : X q Y → X × Y the morphism constructed above. Then we have the identities: pIi = 1X , pIj =
0, qIi = 0, qIj = 1Y . (Think about why we have those identities).

Now, we have two maps ip, jq : X×Y → XqY . If our category is additive, we can take their sum
J = ip + jq. We’ll show that this is the inverse to I. For that, it is enough to show that the following
hold: IJ = 1X×Y and JI = 1XqY . Here we are going to use the universal properties of products and
co-products. In particular, to show that IJ = 1, all we have to do is to show that they are equal after
composing with the projections, i.e. that pIJ = p and that qIJ = q. Now, using the bilinearity of
composition, the definition of J , the identities mentioned above and the fact that the zero morphism
is the zero element of the group structure, we have that pIJ = pI(ip + jq) = pIip + pIjq = p + 0 = p,
and similarly that qIJ = q, so this proves the first of the two relations needed above. We leave the
verification of the other relation to you.

This can be generalized to show that the product and the co-product of a finite set of objects are
isomorphic in an additive category. Notice though that this is no longer true for infinite products and
co-products.

Exercise 22. Modify the above proof to show that in an additive category, the product of two objects
is indeed a co-product. (Notice that above we assumed that the co-product existed).

8 Yoneda’s lemma and its importance

We described earlier the natural embedding of a vector space into its double dual, which is an isomor-
phism for finite-dimensional spaces. The significance of this is that the elements of the double dual
are functions on some space, so what this process does is enable us to think of the elements of a vector
space as functions. And functions are nice to work with.

A similar thing can be done in any category, and it goes under the name of Yoneda’s lemma.
To understand it a bit better, let’s start with a category C and an object X ∈ C . Then this gives
rise to a functor hX from C op to the category of sets: To an object Y ∈ C op we can associate the
set Hom C (Y, X) of morphisms to X, i.e. hX(Y ) = Hom C (Y, X) .This is a functor. Now, we can
form a category with objects all functors from C op to the category of sets, and morphisms natural
transformations. Let’s denote this by D . The above process associates to every X ∈ C an object hX in
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D . In fact, this is a functor of categories. Yoneda’s lemma basically asserts that this is a fully faithful
embedding, i.e. every category can be thought of as a full subcategory of a category of functors. If
none of the above makes sense, just keep in mind this: “An object can be recovered from the sets of
maps from other objects to it”.
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