
ALGEBRAIC K-THEORY

BERTRAND GUILLOU

1. Introduction

The idea will be to associate to a ring R a set of algebraic invariants, Ki(R), called the
K-groups of R. We can even do a little better than that: we will associated an (infinite
loop) space K(R) to R and the K-groups will be the homotopy groups of this space. In
fact, the first example of interest was not the K-theory of a ring but rather of a category of
coherent sheaves on a scheme. The K-theory of a ring R is defined to be the K-theory of the
category of finitely generated projective modules over R, and we will see that we can define
K-theory spaces associated to abelian categories (more generally to exact categories) (Q
construction), to symmetric monoidal categories (S−1S construction), and to Waldhausen
categories (S• construction).

2. Classical K-groups

2.1. K0(R)
Recall that K0 of a paracompact topological space X is given by the Grothendieck group
associated to the monoid of isomorphism classes of complex vector bundles on X. But
Swan’s Theorem tells us that when X is compact, the global sections functor Γ induces an
equivalence of categories

Γ : Vect(X) → Projf.g.(C(X)),
where C(X) is the ring of continuous complex-valued functions on X and Projf.g.(C(X)) is
the category of finitely generated projective C(X)-modules.

Now let R be any commutative ring (with unit) and let P(R) be the category of finitely
generated projective R-modules. This is an abelian monoid under ⊕. By the above, it
seems reasonable to define

Definition 1. K0(R) is the Grothendieck group associated to P(R).

In general, the Grothendieck group K associated to a commutative monoid M satisfies
the universal property that monoid maps M → G to abelian groups G must factor through
K.

Example 1. In the case that R = F is a field, finitely generated projective modules are
always free (in fact any module is free) and are classified by their rank. Thus P(F ) = N
and K0(F ) = Z. The same is true more generaly for any local ring or for any PID. Thus
K0(Z) = Z.

Remark 1. Note that the tensor product of projective modules induces a ring structure
on K0(R).

Roughly, K0(R) measures how much finitely generated projective R-modules fail to have
a well-behaved dimension theory.
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2.2. K1(R)
Let Gl(R) be the infinite linear group Gl(R) = colim

n
Gln(R).

Definition 2. K1(R) = Gl(R)/[Gl(R), Gl(R)].

Note that K1(R) is the abelianization of Gl(R), so that it enjoys the universal property
of maps Gl(R) → A to abelian groups. Also, we have K1(R) = H1(Gl(R);Z).

Proposition 1. (Whitehead) The commutator subgroup of Gl(R) is E(R), the normal
subgroup generated by elementary matrices.

This gives us another description of K1(R), as Gl(R)/E(R). Note that any elementary
matrix Eij(α) can be contracted to the identity by Eij(tα), so that we can think of E(R)
as the contractible part of Gl(R).

Recall that a group G is perfect if G = [G,G]. The following fact will be useful later:

Proposition 2. E(R) is perfect.

Theorem 1. (Mayer-Vietoris) Given a cartesian diagram of rings

R //

²²

S

f
²²

A
g // B

in which f is surjective, there is a six term exact sequence

K1(R) → K1(A)⊕K1(S) → K1(B) → K0(R) → K0(A)⊕K0(S) → K0(B).

Example 2. If R is any local ring or Euclidean domain, then Sl(R) is generated by ele-
mentary matrices; i.e., Sl(R) = E(R). Now we always have

1 → Sl(R) → Gl(R) det−−→ R× → 1,

so we conclude that K1(R) = R× for any local ring (in particular for any field).

Roughly, K1(R) measures how much Sl(R) fails to be generated by elementary matrices.

2.3. K2(R)
Milnor originally introduced K2(R) as the kernel of the canonical homomorphism

St(R) → Gl(R),

where St(R) is the Steinberg group. It can be shown that the image of St(R) is precisely
E(R). Moreover, one can show that a group G has a universal central extension if and only
if it is perfect and that in fact

0 → K2(R) → St(R) → E(R) → 1

is the universal central extension of E(R). This allows us to define K2(R) without first
defining St(R). As a corollary, we get K2(R) ∼= H2(E(R),Z).

Theorem 2. (Mayer-Vietoris, Revisited) The exact sequence of Theorem 1 extends to

K2(R) → K2(A)⊕K2(S) → K2(B) → K1(R) → · · · → K0(B).

Proposition 3. For n ≥ 3, we have a central extension

0 → Z/2 → Stn(Z) → En(Z) → 1.

It follows that K2(Z) ∼= Z/2.
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The following theorem of Matsumoto gives us a nice description of K2 of a fiel:

Theorem 3. (Matsumoto) When R = F is a field, the group K2(F ) has the following
simple description:

K2(F ) = F× ⊗ F×/(x⊗ (1− x))

for all x 6= 1.

We often write {x, y} rather than x⊗ y in K2(F ).

2.4. Milnor K-theory of fields
In light of Matsumoto’s theorem and our computation of K0 and K1 of a field, one might
simply define

K∗(F ) = Z[F×]/(a⊗ (1− a))

for a 6= 1. That is, K∗(F ) is the free tensor algebra on F× modulo the relations a⊗(1−a) = 0
for all a 6= 1. Again, we often write {a1, a2, . . . , an} for a1 ⊗ a2 ⊗ · · · ⊗ an. This is known
as the Milnor K-theory of F and often denoted KM∗ (F ). Unfortunately, this will not agree
with the higher K-theory that will be defined below.

Milnor’s Conjecture states that the Milnor K-theory of a field F of characteristic not equal
to 2 may be identified with a certain étale cohomology group after tensoring with Z/2. This
was proved approximately 8 years ago by Voevodsky using tools from A1-homotopy theory.

3. Higher K-groups

3.1. The Plus Construction
Let X be a space and let E be a perfect, normal subgroup of π1(X). The goal of the plus
construction is to obtain a new space, X+ with the same homology as X and such that
π1(X+) = π1(X)/E. The obvious thing to try is to attach 2-cells to kill E, but then the
homology will have changed, so one must attach 3-cells to kill the new elements of H2. In
fact this works, but we will fill in the details below. More precisely, we will prove

Theorem 4 (Quillen). Let X be a based space and let E be a prefect, normal subgroup of
π1(X). Then there exists a space X+, together with a map i : X → X+ such that

(1) π1(i) is an epimorphism with kernel E and
(2) H∗(i) is an isomorphism.

Proof. We will first suppose that E = π1(X). Note that this gives H1(X) =
π1(X)/[π1(X), π1(X)] = 0. We form a space Y by attaching a 2-cell eα for each gener-
ator of E. By Van Kampen, we see that π1(Y ) = 0 (and therefore H1(Y ) = 0). Note that
we can view Y as the cofiber of a map f :

∨
α S1 → X, where π1(f) is an epimorphism.

Now Hq(
∨

α S1) = 0 for q > 1, so the long exact sequence in homology for the cofibration
gives

Hq(X) ∼= Hq(Y )

for q > 2. When q = 2, we have

0 → H2(X) → H2(Y ) → H1(
∨
α

S1) → H1(X) = 0.

But H1(
∨

α S1) is free abelian, so we get a splitting H1(
∨

α S1) ↪→ H2(Y ). On the other
hand, Hurewicz gives us that π2(Y ) ∼= H2(Y ). It follows that there is a map w :

∨
α S2 → Y
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such the composite

H2(
∨
α

S2) w∗−−→ H2(Y ) δ−→ H1(
∨
α

S1)

is an isomorphism.
Now let X+ be the cofiber of

∨
α S2 w−→ Y ; in other words, we are attaching 3-cells to Y .

The map i : X → X+ will then be the composite X → Y → X+. The long exact sequence
in homology for the cofibration

∨
α S2 → Y → X+ gives

Hq(Y ) ∼= Hq(X+)

for q > 3 and q = 1 (to see the epi when q = 1, use reduced homology, if you like). This
leaves

0 → H3(Y ) → H3(X+) → H2(
∨
α

S2) w∗−−→ H2(Y ) → H2(X+) → 0.

But by construction w∗ : H2(
∨

α S2) → H2(Y ) is a monomorphism, which gives H3(Y ) ∼=
H3(X+). Also by construction we have coker

(
H2(

∨
α S2) w∗−−→ H2(Y )

) ∼= H2(X). Thus

H2(X) ∼= H2(X+). This finishes the construction of X+ in the case that E = π1(X).
More generally when E is a perfect normal subgroup of π1(X), let p : X̃E → X be the

cover associated to E, so that π1(X̃E) = E. The above construction gives us

ĩ : X̃E → X̃+
E .

Replacing ĩ up to equivalence by a cofibration, we then define i : X → X+ to be the pushout
of ĩ along p:

X̃E
ĩ //

p

²²

X̃+
E

p+

²²
X

i // X+

Van Kampen gives us that π1(i) : π1(X) → π1(X+) is an epimorphism with kernel E. Since
ĩ is now a cofibration, we can replace p by a cofibration without changing the homotopy
type of any of the four spaces (probably need to assume our spaces are CW at this point).
We can then use excision to deduce that i∗ : H∗(X) → H∗(X+) is an isomorphism from the
fact that ĩ∗ : H∗(X̃E) → H∗(X̃+

E ) is an isomorphism.
¥

Proposition 4. In fact, i : X → X+ satisfies the following universal property: if f : X → Z
is any map such that π1(f)(E) = 0, then there exists a factorization g : X+ → Z, unique
up to homotopy, in the diagram

X
i //

f

²²

X+

∃}}{
{

{
{

Z

Proof. This follows from obstruction theory. The obstruction to extending a map X → Z
to one defined on X+ is given by a class in H3(X+, X; π2(Z)), and homotopy classes of
extensions are in bijective correspondence with elements of H3(X+, X;π3(Z)). Both of
these groups vanish by the theorem. ¥

Remark 2. Note that the proposition implies that X+ is well-defined up to homotopy
equivalence.
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Remark 3. One beautiful application of the plus construction is the theorem of Barrat,
Priddy, and Quillen that

BΣ+
∞ ' QS0 = colim

n
ΩnΣnS0.

In particular,
πn(BΣ+

∞) = πs
n(S0).

Applying the plus construction to BGl(R) with E = E(R) E Gl(R) = π1(BGl(R)), we
then define

Ki(R) = πi(BGl(R)+)
for i ≥ 1. Defining a space K(R) by K(R) = K0(R)×BGl(R)+, we then have the formula

Ki(R) = πi(K(R))

for i ≥ 0.

Remark 4. The above construction of X+ is not functorial, but there are functorial con-
structions. One such construction involves the integral completion functor of Bousfield and
Kan. In particular, in the case of BGl(R), we can take Z∞BGl(R) as a model for BGl(R)+.
The integral completion of a pointed space is given by

Z∞X = Tot Ẑ[X],

where Ẑ[X] is the cosimplicial space associated to the monad Z̃ (reduced free abelian group
functor) applied to X.

Remark 5. By construction, we have π1(BGl(R)+) = Gl(R)/E(R), which agrees with the
classical definition. To see that pi2 agrees with the previous definition, note that we can
take BE(R)+ ∪BE(R) BGl(R) as a model for BGl(R)+. Then BE(R)+ → BGl(R)+ is a
universal cover, and we get

π2(BGl(R)+) ∼= π2(BE(R)+) ∼= H2(BE(R)+;Z) ∼= H2(BE(R);Z) ∼= H2(E(R);Z) ∼= K2(R).

Quillen has shown that in fact BGl(R)+ is a homotopy commutative, homotopy associa-
tive H-space, where the product comes from tensor product of matrices. For rings A and
B, we in fact have a map

BGl(A)+ ∧BGl(B)+ → BGl(A⊗B)+

This allows us to define products in K-theory:

Km(A)⊗Kn(A) = Km+n(A),

which makes K∗(A) a graded-commutative ring. Moreover, BGl(R)+ is an infinite loop
space, but we will not comment further on this here.

3.2. The S−1S construction
Now suppose that S is a symmetric monoidal category. Then BS is an H-space, the product
being given by ⊗ : S × S → S. Moreover, the axioms for a symmetric monoidal category
imply that BS is in fact homotopy-associative and homotopy-commutative (in fact BS is
associate and commutative to up to all higher homotopies, so that is an E∞-space).

Unfortunately, if a category has an inital object then its classifying space is contractible,
so the above H-space will often be uninteresting. On the other hand, there is a way of
obtaining an interesting H-space. Namely, let isoS be the subcategory of isomorphisms of
S. That is, isoS has the same objects as S, but the morphisms are only the isomorphisms
in S. Then isoS is still symmetric monoidal, and so B(isoS) is an H-space.
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Example 3. (a) Any additive category is symmetric monoidal, with monoidal product
given by the direct sum.

(b) As an example of (a), the category F(R) of finitely generated free modules over R is
symmetric monoidal, with product given by ⊕. We have

B(isoF(R)) ∼=
∐

M

B(Aut(M)) ∼=
∐
n

BGln(R),

where the coproduct runs over isomorphism classes of finitely generated free modules M .
(c) The category P(R) of finitely generated projective modules over R is symmetric

monoidal, with product given by ⊕. We have

B(isoP(R)) ∼=
∐

B(Aut(P )),

where the coproduct runs over isomorphism classes of finitely generated projective modules
P .

(d) The category FinSet of finite sets is symmetric monoidal under both disjoint union
and cartesian product, though only disjoint union leads to an interesting H-space since
∅ ×X = ∅ for all X. Under disjoint unoin, we have

B(isoFinSet) =
∐

X

B(Aut(X)) =
∐
n

BΣn,

where again the first coproduct runs over isomorphism classes of finite sets X.

As before, however, the space B(isoS ) is not quite the right space–we need to apply
some sort of group completion.

Definition 3. Let S be a symmetric monoidal category. We define a new category S−1S as
follows. The objects of S−1S are pairs (m,n) of objects in S. A morphism (m,n) → (p, q)
in S−1S is an equivalence class of morphisms

(m,n) s⊗−−→ (s⊗m, s⊗ n)
(f,g)−−−→ (p, q),

where a composite of this form is said to be equivalent to a composite

(m,n) t⊗−→ (t⊗m, t⊗ n)
(f ′,g′)−−−−→ (p, q)

if there is an isomorphism s ∼= t making the relevant diagram commute. A warning should
be given here that the arrows (m,n) s⊗−−→ (s ⊗ m, s ⊗ n) are purely formal and do not
correspond to pairs of morphisms in S.

Composition is defined as follows: given a pair of morphisms

(m,n) s⊗−−→ (s⊗m, s⊗ n)
(f,g)−−−→ (p, q),

and
(p, q) t⊗−→ (t⊗ p, t⊗ q)

(ϕ,ψ)−−−→ (u, v),
the composite is defined as

(m,n) t⊗s⊗−−−→ (t⊗ s⊗m, t⊗ s⊗ n)
(ϕ◦(t⊗f),ψ◦(t⊗g))−−−−−−−−−−−→ (u, v).

Remark 6. Note that S−1S is symmetric monoidal with (m,n)⊗ (p, q) = (m⊗ p, n⊗ q).
Moreover, we have a (strict) monoidal functor S → S−1S given by m 7→ (m, k), where k
is the unit of S. This induces a map BS → B(S−1S) of H-spaces and a map of abelian
monoids

π0(BS) → π0(B(S−1S)).
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In fact π0(B(S−1S)) is an abelian group and the above map is a group completion (the
inverse in π0 of an element (m,n) is (n,m)).

Definition 4. Let S be a symmetric monoidal groupoid. The K-theory space K(S) of S is
then defined to be B(S−1S). For a general symmetric monoidal category S, we define the
K-theory space of S to be K(isoS).

As usual, the K-groups of S are simply the homotopy groups of the K-theory space.
As we have said above, π0(B(S−1S)) is the group completion of π0(B(S)), so K0(P(R)) =

K0(R) as defined classsically. It can be shown that Kn(P(R)) ∼= Kn(F(R)) for n ≥ 1, using
the fact that every projective is a direct summand of a free.

Definition 5. We say that translations are faithful in the symmetric monoidal category S
if for every objects s and t, the translations Aut(t) → Aut(s⊗ t) are injections.

Theorem 5. (Quillen) If S is a symmetric monoidal groupoid and translations are faithful
in S, then B(S−1S) is a group completion of BS.

Corollary 1. If S is a symmetric monoidal groupoid and translations are faithful in S,
then

K1(S) = lim
s∈S

H1(Aut(s);Z)

and
K2(S) = lim

s∈S
H2([Aut(s), Aut(s)];Z).

In the case S = F(R), this gives

K1(F(R)) = lim
n

H1(Gln(R);Z) = H1(Gl(R);Z) = K1(R)

and
K2(F(R)) = lim

n
H2([Gln(R), Gln(R)];Z) = H2(E(R);Z) = K2(R).

Thus our definition agrees with the classical one.

Remark 7. The classifying space of a symmetric monoidal category is always an E∞-
space. Since B(S−1S) is moreover group-like (i.e. π0 is a group), this space is an infinite
loop space. Thus we can in fact associate to S a spectrum K(S) whose homotopy groups
are the K-groups previously defined.


