
1. Let f : R2 −→ R be a function having partial derivatives of all orders. The Taylor series
of f centered around c = (a, b) is a power series in x and y of the form

T( f , c) = f (c) + α1,0(x− a) + α0,1(y− b)
+ α2,0(x− a)2 + α1,1(x− a)(y− b) + α0,2(y− b)2 + higher order terms

(a) Assume that the Taylor series converges to f , so that

f (x, y) = T( f , c)(x, y)

(at least in a disk around c). Take partial derivatives of both sides with respect to x
to find the coefficient α1,0. Use ∂

∂y to find α0,1.
SOLUTION:
∂T
∂x

= α1,0 + 2α2,0(x− a) + α1,1(y− b) + higher order terms. Plugging in x = a, y = b

we see that all terms vanish except α1,0. So
∂T
∂x
|(a,b) = α1,0. In the same way we find

that
∂T
∂y
|(a,b) = α0,1.

(b) Use second order partial derivatives to find the coefficients α2,0, α1,1, and α0,2.
SOLUTION:
∂2T
∂x2 = 2α2,0 + higher order terms involving (x− a) and (y− b). Again, plugging in

x = a, y = b, everything vanishes except 2α2,0. So
∂2T
∂x2 |(a,b) = 2α2,0. In the same way

we find that
∂2T
∂x∂y

|(a,b) = α1,1 and
∂2T
∂y2 |(a,b) = 2α0,2.

2. Consider f (x, y) = 2 cos x− y2 + exy.

(a) Show that (0, 0) is a critical point for f .
SOLUTION:
∂ f
∂x |(0,0) = (−2 sin x + yexy)|(0,0) = 0 and ∂ f

∂y = (−2y + xexy)|(0,0) = 0

(b) Calculate each of fxx, fxy, fyy at (0, 0) and use this to write out the 2nd-order Taylor
approximation for f at (0, 0).
SOLUTION:
fxx = −2 cos x + y2exy, fyy = −2 + x2exy, and fxy = exy + xyexy. So fxx(0, 0) = −2 =
fyy(0, 0) and fxy(0, 0) = 1. In the notation of problem 1 we have α1,0 = α0,1 = 0,
α2,0 = α0,2 = −1, and α1,1 = 1. Also f (0, 0) = 3. So the second order Taylor
approximation for f at (0, 0) is g(x, y) = 3− x2 − y2 + xy.

(c) To make sure the next two problems go smoothly, check your answer to (b) with the
instructor.
SOLUTION:Yes.

3. Let g(x, y) be the approximation you obtained for f (x, y) near (0, 0) in 1(b).



(a) It’s not clear from the formula whether g, and hence f , has a min, max, or a saddle
at (0, 0). Test along several lines until you are convinced you’ve determined which
type it is.
SOLUTION:
Let’s test a general line y = mx which goes through (0, 0) as x → 0. Then g(x, mx) =
3− x2 − m2x2 + mx2 = 3− (1− m + m2)x2. The polynomial 1− m + m2 is always
positive (it opens upward and has its global minimum at m = 1/2 where 1− m +
m2 > 0). So g(x, mx) is always a downward opening parabola. This suggests that
(0, 0) is a relative maximum.

(b) Check that you’re right in (a) using the 2nd-derivative test. The next problem will
help explain why this test works.
SOLUTION:
The Hessian fxx fyy − ( fxy)2 is (−2)(−2)− 12 = 3 > 0 at (0, 0) and fxx(0, 0) = −2 <

0. So f has a relative maximum at (0, 0) as suspected.

4. Consider alternate coordinates on R2 where (u, v) corresponds to u(1, 1) + v(−1, 1).

(a) Sketch the u- and v-axes, and draw the points whose (u, v)-coordinates are: (−1, 2),
(1, 1), (1,−1).
SOLUTION:

H-1,2L

H1,1L

H1,-1L

uv

(b) Give the general formula for the (x, y)-coordinates of a point in terms of u and v.
(Like x = r cos θ and y = r sin θ in polar coordinates.)
SOLUTION:
Break the vectors into components. This gives x = u− v and y = u + v.

(c) Use (b) to express g as a function of u and v, and expand and simplify the resulting
expression.
SOLUTION:
3− x2− y2 + xy = 3− (u− v)2− (u + v)2 + (u− v)(u + v) = 3− (u2− 2uv + v2)−
(u2 + 2uv + v2) + u2 − v2 = 3− u2 − 3v2.

(d) Explain why your answer in 3(c) confirms your answer in 2.
This is an elliptic paraboloid (in uv coordinates) opening downward with maximum
at (0, 0, 3), so it confirms that (0, 0) is a local maximum ( (0, 0) goes to (0, 0) under
the transformation, so this reasoning makes sense).



(e) Sketch a few level sets for g. What do the level sets of f look like near (0, 0)?

SOLUTION:The level sets are sketched for g = 2, 2.25, 2.5, and 2.75. These are el-
lipses and they shrink as they get closer to g(x, y) = 3, which consists of the single
solution (x, y) = (0, 0).
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It turns out that there is always a similar change of coordinates so that the Taylor series
of a function f which has a critical point at (0, 0) looks like f (u, v) ≈ f (0, 0) + au2 + bv2.


