Thursday, October 6 ** Curves and integration.

- 1. (a) Sketch the first-octant portion of the sphere $x^2 + y^2 + z^2 = 5$. Check that $P = (1, 1, \sqrt{3})$ is on this sphere and add this point to your picture.
 - (b) Find a function f(x, y) whose graph is the top-half of the sphere.
 - (c) Imagine an ant walking along the surface of the sphere. It walks *down* the sphere along the path *C* that passes through the point *P* in the direction parallel to the *yz*-plane. Draw this path in your picture.
 - (d) Use the function from (b) to find a parameterization $\mathbf{r}(t)$ of the ant's path along the portion of the sphere shown in your picture. Specify the domain for \mathbf{r} , i.e. the initial time when the ant is at P and the final time when it hits the xy-plane.
- 2. Consider the curve C in \mathbb{R}^3 given by

$$\mathbf{r}(t) = (e^t \cos t) \mathbf{i} + 2\mathbf{j} + (e^t \sin t) \mathbf{k}$$

- (a) Calculate the length of the segment of C between $\mathbf{r}(0)$ and $\mathbf{r}(t_0)$. Check your answer with the instructor.
- (b) Suppose $h: \mathbb{R} \to \mathbb{R}$ is a function. We can get another parameterization of C by considering the composition

$$\mathbf{f}(s) = \mathbf{r}(h(s))$$

This is called a *reparameterization*. Find a choice of *h* so that

- i. $\mathbf{f}(0) = \mathbf{r}(0)$
- ii. The length of the segment of C between $\mathbf{f}(0)$ and $\mathbf{f}(s)$ is s. (This is called parameterizing by arc length.)

Check your answer with the instructor.

- (c) Without calculating anything, what is $|\mathbf{f}'(s)|$?
- (d) Draw a sketch of *C*.
- 3. Consider the curve *C* given by the parameterization **r**: $\mathbb{R} \to \mathbb{R}^3$ where $\mathbf{r}(t) = (\sin t, \cos t, \sin^2 t)$.
 - (a) Show that *C* is in the intersection of the surfaces $z = x^2$ and $x^2 + y^2 = 1$.
 - (b) Use (a) to help you sketch the curve C.
- 4. As in 2(b), consider a reparameterization

$$\mathbf{f}(s) = \mathbf{r}\big(h(s)\big)$$

of an arbitrary vector-valued function $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^3$. Use the chain rule to calculate $|\mathbf{f}'(s)|$ in terms of \mathbf{r}' and h'.