## **Practice Final Exam for Math 241**

- 1. Consider the points A = (2, 0, 1) and B = (4, 2, 5) in  $\mathbb{R}^3$ .
  - (a) Find the point *M* which is halfway between *A* and *B* on the line segment *L* joining them.(2 pts)
  - (b) Find the equation for the plane *P* consisting of all points that are equidistant from *A* and *B*. (3 pts)
- 2. Consider the function

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

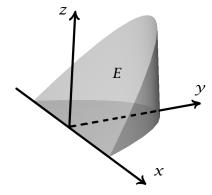
(a) Compute the following limit, if it exists. (4 pts)

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

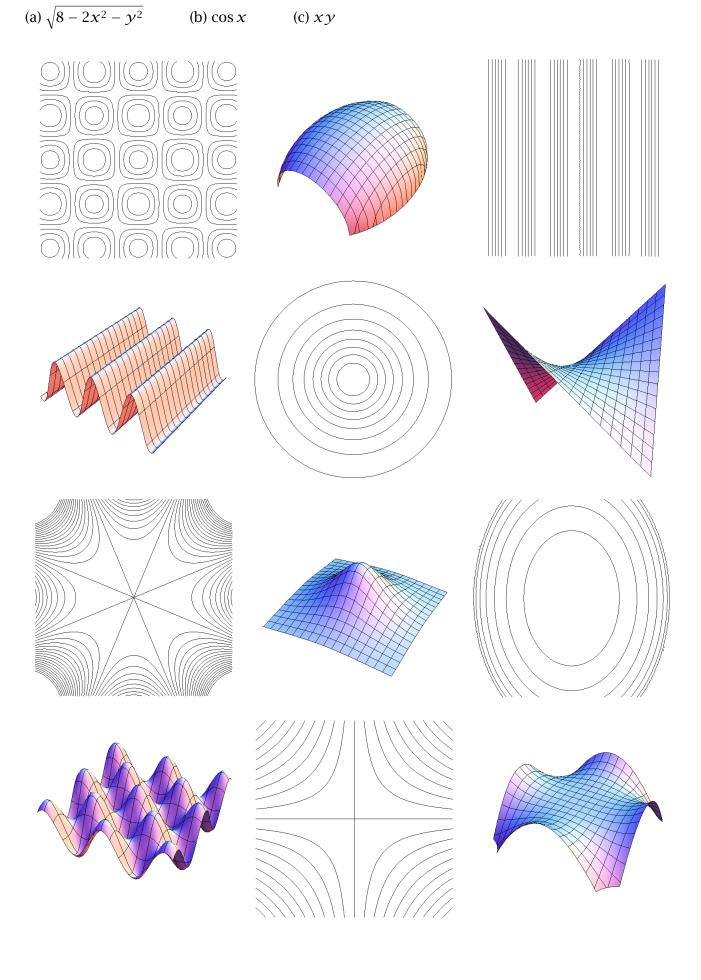
- (b) Where on  $\mathbb{R}^2$  is the function *f* continuous? (1 pts)
- 3. Consider the function  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(x, y) = xy.
  - (a) Use Lagrange multipliers to find the global (absolute) max and min of f on the circle  $x^2 + y^2 = 2$ . (6 pts)
  - (b) If they exist, find the global min and max of f on  $D = \{x^2 + y^2 \le 2\}$ . (2 pts)
  - (c) For each critical point in the interior of *D* you found in part (b), classify it as a local min, local max, or saddle. (2 pt)
  - (d) If they exist, find the global min and max of f on  $\mathbb{R}^2$ . (2 pts)
- 4. A function  $f: \mathbb{R}^2 \to \mathbb{R}$  takes on the values shown in the table at right.

| (a) Estimate the partials $f_x(1,1)$ and                                   |   |     |      |      | X    |      |      |
|----------------------------------------------------------------------------|---|-----|------|------|------|------|------|
| $f_{\mathcal{Y}}(1,1)$ . (2 pts)                                           |   |     | 0.2  | 0.6  | 1.0  | 1.4  | 1.8  |
| (b) Use your answer in (a) to approximate $f(1.1, 1.2)$ . (2 pts)          |   | 1.8 | 3.16 | 3.88 | 4.60 | 5.32 | 6.04 |
|                                                                            |   | 1.4 | 2.68 | 3.24 | 3.80 | 4.36 | 4.92 |
|                                                                            | У | 1.0 | 2.20 | 2.60 | 3.00 | 3.40 | 3.80 |
| (c) Determine the sign of $f_{xy}(1,1)$ :<br>positive negative zero (1 pt) |   | 0.6 | 1.72 | 1.96 | 2.20 | 2.44 | 2.68 |
|                                                                            |   | 0.2 | 1.24 | 1.32 | 1.40 | 1.48 | 1.56 |

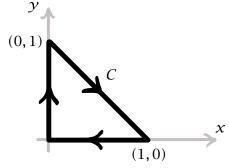
5. Consider the region *E* shown at right, which is bounded by the xy-plane, the plane z - y = 0 and the surface  $x^2 + y = 1$ . Complete setup, but do not evaluate, a triple integral that computes the volume of *E*. (6 pts)



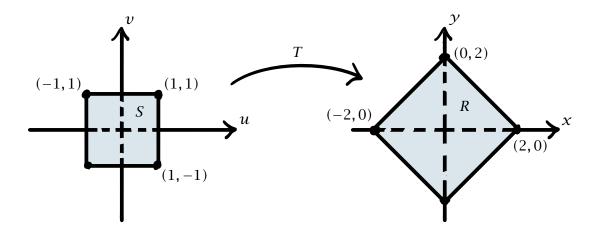
6. Match the following functions  $\mathbb{R}^2 \to \mathbb{R}$  with their graphs and contour diagrams. Here each contour diagram consists of level sets  $\{f(x, y) = c_i\}$  drawn for evenly spaced  $c_i$ . (9 pts)



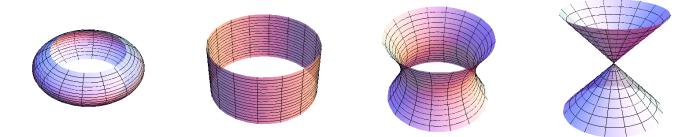
- 7. Consider the portion *R* of the cylinder  $x^2 + y^2 \le 2$  which lies in the positive octant and below the plane z = 1. Compute the total mass of *R* when it is composed of material of density  $\rho = e^{x^2 + y^2}$ . (7 pts)
- 8. For the curve *C* in  $\mathbb{R}^2$  shown and the vector field  $\mathbf{F} = (\ln(\sin(x)), \cos(\sin(y)) + x)$  evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  using the method of your choice. (5 pts)



9. Let *R* be the region shown at right.

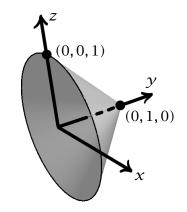


- (a) Find a transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  taking  $S = [-1, 1] \times [-1, 1]$  to *R*. (4 pts)
- (b) Use your change of coordinates to evaluate  $\int_{R} y^2 dA$  via an integral over *S*. (6 pts) **Emergency backup transformation:** If you can't do (a), pretend you got the answer T(u, v) = (uv, u + v) and do part (b) anyway.
- 10. Consider the surface *S* which is parameterized by  $\mathbf{r}(u, v) = (\sqrt{1 + u^2} \cos v, \sqrt{1 + u^2} \sin v, u)$  for  $-1 \le u \le 1$  and  $0 \le v \le 2\pi$ .
  - (a) Circle the picture of *S*. (2 pts)



(b) Completely setup, but do not evaluate, an integral that computes the surface area of *S*. (6 pts)

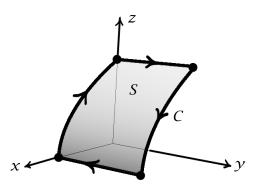
11. For the cone *S* at right, give a parameterization **r**:  $D \rightarrow S$ . Explicitly specify the domain *D*. (5 pts)



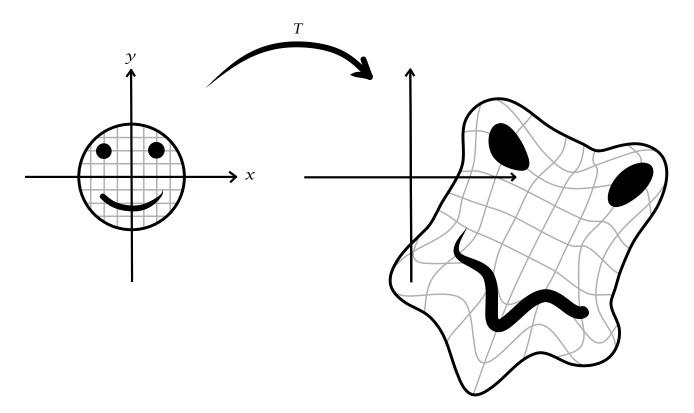
- 12. Consider the region *R* in  $\mathbb{R}^3$  above the surface  $x^2 + y^2 z = 4$  and below the *xy*-plane. Also consider the vector field  $\mathbf{F} = (0, 0, z)$ .
  - (a) Circle the picture of *R* below. (2 pts)



- (b) Directly calculate the flux of **F** through the entire surface  $\partial R$ , with respect to the outward unit normals. (10 pts)
- (c) Use the Divergence Theorem and your answer in (b) to compute the volume of *R*. (3 pts)
- 13. Let *C* be the curve shown at right, which is the boundary of the portion of the surface  $x + z^2 = 1$  in the positive octant where additionally  $y \le 1$ .
  - (a) Label the four corners of *C* with their (*x*, *y*, *z*)-coordinates.
    (1 pt)
  - (b) For  $\mathbf{F} = (0, xyz, xyz)$ , directly compute  $\int_C \mathbf{F} \cdot d\mathbf{r}$ . (6 pts)
  - (c) Compute curl F. (2 pts)
  - (d) Use Stokes' Theorem to compute the flux of curl F through the surface *S* where the normals point out from the origin. (3 pts)
  - (e) Give two distinct reasons why the vector field **F** is *not* conservative. **(2 pts)**



**Extra Credit 1:** Consider the transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  which distorts the plane as shown below:



- (a) Draw in T(0,0) on the right-hand part of the picture. (1 pt)
- (b) Compute the Jacobian matrix of T at (0, 0), taking it as given that the entries of the matrix are integers. Hint: Tear off the bottom of this page to form a makeshift ruler. (3 pts)

**Extra Credit 2:** Consider the torus *T* shown below where the inner radius is 2 and the outer radius is 4, and hence the radius of tube itself is 1.

- 1. Compute the volume of *T* by computing the flux of some vector field **F**. (3 pts)
- 2. Compute the volume of *T* via a 3-dimensional change of coordinates where your final integral is over a rectangular box. (2 pts)

