
Math 351 - Elementary Topology
Friday, November 9 ∗∗ Exam 2 Review Problems

1. Give an example of subspaces A ⊆ Rn and B ⊆ Rn, for some n, together with a continu-
ous bijection f : A −→ B which is not a homeomorphism.

2. Show that if f : X −→ Y is a homeomorphism and A ⊆ X, then Int
(

f (A)
)
= f (Int A).

3. Let f : X −→ Y be an embedding.

(a) Prove or disprove: If Y is Hausdorff, so is X.

(b) Prove or disprove: If X is Hausdorff, so is Y.

4. Show that if A ⊆ X is closed and B ⊆ Y is also closed, then A × B ⊆ X × Y is closed.
Use only the definition of the product topology. In other words, you may not use that
A× B = A× B.

5. Let (xn) and (yn) be sequences in the spaces X and Y, respectively. Show that xn → x and
yn → y if and only if (xn, yn)→ (x, y) in X×Y.

6. Let X = R` ×R and let L ⊆ X be a line. Describe the topology on L inherited from X.
Hint: the answer depends on the slope of L.

7. Let X×Y be partitioned into the subsets X×{y}, one partition for each y ∈ Y. Show that
the resulting quotient (X×Y)∗ is homeomorphic to Y.

8. Give an example of a quotient map q : X � Y such that q is not an open map.

9. Let Z ⊆ R2 be the union of the two coordinate axes. Define q : R2 � Z by

q(x, y) =
{

(x, 0) x 6= 0
(0, y) x = 0.

(a) Show that q is not continuous if Z is given the subspace topology.

(b) Describe the resulting quotient topology on Z. What would be a basis for this topol-
ogy? Is it Hausdorff?

10. Show that a hexagon with opposite edges glued together with a flip yields RP2.



Solutions.
1. There are many possibilities, but one example that was mentioned in class is A = [0, 1] ∪
(2, 3] and B = [0, 2], with the continuous bijection f : A −→ B defined by

f (x) =
{

x if 0 ≤ x ≤ 1
x− 1 if 2 < x ≤ 3.

The function f is clearly a bijection (an inverse is g : B −→ A defined by g(y) = y if 0 ≤ y ≤ 1
aand g(y) = y+ 1 if 1 < y ≤ 2. ) Also, f is continuous by the glueing lemma because its restric-
tions to the closed subsets [0, 1] and (2, 3] are continuous. However, f is not a homeomorphism
because the subset (2, 3] is closed in A, whereas f ((2, 3]) = (1, 2] is not closed in B = [0, 2].

2. Since f is a homeomorphism f (Int(A)) is open in Y. Also, since Int(A) ⊆ A, it follows that
f (Int(A)) ⊆ f (A). Since Int( f (A)) is the largest open subset in f (A), it follows that

f (Int(A)) ⊆ Int( f (A)).

It remains to show the other inclusion. Let us write V = Int( f (A)) and let y ∈ V ⊆ f (A).
Then we can write y = f (x) for some x ∈ A. We must show that x ∈ Int(A). Since y = f (x)
is in V, it follows that x is in the set U = f−1(V). Since f is continuous, U is open. Also, since
V ⊆ f (A), it follows that

U = f−1(V) ⊆ f−1( f (A)) = A.

Note that we have used that f is injective to get the last equality. We now have x ∈ U ⊆
A. Since U is open, this implies that x ∈ Int(A). Thus y = f (x) ∈ f (Int(A)). We have
demonstrated that

Int( f (A)) ⊆ f (Int(A)).

3. (a) This is true. Let x1 and x2 be distinct points in X. The embedding f is injective, so f (x1)

and f (x2) are distinct points in Y. Let V1 and V2 be disjoint neighborhoods of these points in
Y. Then U1 = f−1(V1) and U2 = f−1(V2) are disjoint neighborhoods of x1 and x2 in X, so X is
Hausdorff.

(b) This is false. Let X be any Hausdorff space, like X = (0, 1), for example. Let W be any
nonHausdorff space, like W = R/(0, ∞). Then take Y to be the disjoint union Y = X qW
and let f : X −→ Y be the inclusion f = i1. The inclusion a space into the disjoint union with
another space is always an embedding. But Y is not Hausdorff because the points 0 and 1 in
W ⊆ Y do not have disjoint neighborhoods.

4. Let A ⊆ X and B ⊆ Y be closed. Then the complements U = X \ A and V = Y \ B are open.
We wish to show that A× B is closed in X×Y, which means that the complement is open. The
complement is (

X×Y
)
\
(

A× B
)
=

(
U ×Y

)
∪
(
X×V

)
.



The two sets on the right are basis elements in the product topology, so their union is open. It
follows that A× B is closed.

5. (⇒) Assume xn → x and yn → y. Let W be a neighborhood of (x, y) in X× Y. Then there is
a basic neighborhood

(x, y) ∈ U ×V ⊆W.

Since xn → x and x ∈ U, some tail of the sequence (xn) is in U. Suppose {xn | n > M} ⊆ U.
Similarly, yn → y and y ∈ V, so a tail of this sequence is in V. Suppose {yn | n > N} ⊆ V.
Then if n > K = max{M, N}, it follows that (xn, yn) ∈ U × V ⊆ W. In other words, we have
shown that a tail of the sequence (xn, yn) is in W, so (xn, yn)→ (x, y).
(⇐) Recall that the projections π1 : X × Y −→ X and π2 : X × Y −→ Y are continuous. Recall
also that continuous functions preserve convergence of sequences. So if (xn, yn) → (x, y) it
follows that

(xn) = π1(xn, y)→ π1(x, y) = x

and similarly
(yn) = π2(xn, y)→ π2(x, y) = y.

6. Suppose first that the line L is a vertical line. A basic open set in R` × R is of the form
[a, b)× (c, d). Intersecting this basic open set with a vertical line x = e will give either an empty
set if e /∈ [a, b) or an interval {e} × (c, d) if e ∈ [a, b). It follows that the induced topology on
this vertical line is the standard topology.
Suppose now that the line L is not vertical. Then the intersection of a basic open as described
above with the line L will result in either (1) an empty set or (2) an open interval on the line or
(3) a half-open interval on the line. See the figures below.

It follows that the induced topology on the line L is the lower limit topology.

7. Since there is one partition for each y ∈ Y, it it clear that the set (X × Y)∗ is in bijection
with Y and that the quotient map q : X × Y −→ (X × Y)∗ can be modeled as the projection
X×Y −→ Y. It only remains to verify that the topology agrees with the topology of Y. A sub-
set U ⊆ (X × Y)∗ = Y is open if and only if q−1(U) = X ×U is open in X × Y. The projection
map π2 : X × Y −→ Y is continuous and open, so it follows that U ⊆ Y is open if and only if
X×U = π−1

2 (U) ⊆ X×Y is open.



8. Consider the quotient q : R −→ R/[0, 1]. Then (0, 1) ⊆ R is open, but q(0, 1) is the collapsed
point 0 in the quotient. The set q−1(0) = [0, 1] ⊆ R is closed but not open, so 0 is closed and
not open in the quotient.

9. (a) The subset U = {0} × (1, 2) ⊆ Z is open in the subspace topology, but the preimage
q−1(U) = {0} × (1, 2) ⊆ R2 is not open (it is nonempty but does not contain any open discs).

(b) As is shown in the textbook, applying the map q to the basis for R2 will provide a basis for
the quotient topology on Z.
Let D be an open disc in R2 that does not meet the y-axis. Then q(Z) is simply an open interval
on the x-axis in Z that does not contain the origin.
Now let D be an open disc in R2 that intersects the y-axis nontrivially. Then we can write
D = A ∪ B, where A = D ∩

(
{0} ×R

)
and B is the complementary piece B = D \ A. Then

q(A) = A, but q(B) is the union of intervals
(
(a, 0) ∪ (0, b)

)
× {0}, where a < 0 and b > 0.

D q(A)

q(B)

q

So any point on the x-axis (including the origin) will have neighborhoods as in the subspace
topology, but neighborhoods of points in the y-axis necessarily include positive and negative
intervals on the x-axis.
The space Z with the quotient topology is not Hausdorff because no two points on the y-axis
can have disjoint neighborhoods.

10. No cutting-and-pasting is needed for this problem. Recall that the projective plane was
originally defined as the quotient of the square, in which opposite sides are identified with
a flip. We saw that this was the same as a disc with the two sides of the boundary circle
identified with a flip. The hexagon description agrees with both of these, without any cutting-
and-pasting.
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