Group: _

Name: ____

Math 351 - Elementary Topology

Wednesday, November 28 ** Connectedness

The following are equivalent ways of stating that a space *X* is **connected**

- The only nonempty closed and open subset $U \subseteq X$ is X itself.
- If $X = U \amalg V$ with U and V both open, then either U or V is empty.

Define an equivalence relation \sim on *X* by $x \sim y$ if there exists a *connected* subset of *X* that contains both *x* and *y*.

The equivalence class \overline{x} of $x \in X$ is called the "connected component" of x in X.

- 1. Show that the relation defined above is transitive.
- 2. Show that a "connected component" is in fact connected.
- 3. Show that \mathbb{R}_{fc} has only one component (in other words, show it is a connected space).
- 4. Find an example of a space *X* and a connected component $C \subset X$ such that *C* is *not* open in *X*. (The components are always closed, however.)

Write your answer(s) on the rest of this sheet (and back).

