Math 351 - Elementary Topology Monday, October 8 ** Exam 1 Review Problems

- 1. Say $U \subseteq \mathbb{R}$ is open if either it is finite or $U = \mathbb{R}$. Why is this not a topology?
- 2. Let $X = \{a, b\}$.
 - (a) If *X* is equipped with the trivial topology, which functions $f : X \longrightarrow \mathbb{R}$ are continuous? What about functions $g : \mathbb{R} \longrightarrow X$?
 - (b) If *X* is equipped with the topology $\{\emptyset, \{a\}, X\}$, which functions $f : X \longrightarrow \mathbb{R}$ are continuous? What about functions $g : \mathbb{R} \longrightarrow X$?
 - (c) If *X* is equipped with the discrete topology, which functions $f : X \longrightarrow \mathbb{R}$ are continuous? What about functions $g : \mathbb{R} \longrightarrow X$?
- 3. Given an example of a topology on \mathbb{R} (one we have discussed) that is *not* Hausdorff.
- 4. Show that if $A \subset X$, then $\partial A = \emptyset$ if and only if A is both open and closed in X.
- 5. Give an example of a space *X* and an open subset *A* such that $Int(\overline{A}) \neq A$.
- 6. Let $A \subset X$ be a subspace. Show that $C \subset A$ is closed if and only if $C = D \cap A$ for some closed subset $D \subset X$.
- 7. Show that the addition function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$, defined by f(x, y) = x + y, is continuous.
- 8. Give an example of a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which is continuous only at 0 (in the usual topology). Hint: Define *f* piecewise, using the rationals and irrationals as the two pieces.

Solutions.

1. This fails the union axiom. Any singleton set would be open. The set \mathbb{N} is a union of singleton sets and so should also be open, but it is not. So this is not a topology.

2. $X = \{a, b\}.$

a) *X* has the trivial topology: Only constant functions $X \to \mathbb{R}$ are continuous, since if $f(a) \neq f(b)$, then $U = \mathbb{R} \setminus \{f(b)\}$ is open in \mathbb{R} , but $f^{-1}(U) = \{a\}$ would not be open in *X*. On the other hand, every function $\mathbb{R} \to X$ is continuous by homework problem 4.1(b).

b) *X* has the topology $\{\emptyset, \{a\}, X\}$: This is the same as part a). If $f : X \longrightarrow \mathbb{R}$ is not constant, then $U = \mathbb{R} \setminus \{f(a)\}$ is open in \mathbb{R} , but $f^{-1}(U) = \{b\}$ is not open in *X*. For a function $f : \mathbb{R} \longrightarrow X$, the only requirement for it to be continuous is that $f^{-1}(a)$ is open in \mathbb{R} . So for each open set $U \subseteq \mathbb{R}$, there is a continuous function $f : \mathbb{R} \longrightarrow X$ defined by

$$f(x) = \begin{cases} a & x \in U \\ b & x \notin U. \end{cases}$$

c) *X* has the discrete topology: By homework problem 4.1(a), every function $X \longrightarrow \mathbb{R}$ is continuous. The only continuous functions $g : \mathbb{R} \longrightarrow X$ are the constant functions. To see this, note that $\{a\}$ is both open and closed in *X*. So $g^{-1}(\{a\})$ must also be closed and open in \mathbb{R} . But the only closed and open sets in \mathbb{R} are \emptyset and \mathbb{R} (this was the challenge problem on HW1). If $g^{-1}(\{a\}) = \emptyset$, this means *g* is constant at *b*, and if $g^{-1}(\{a\}) = \mathbb{R}$, this means *g* is constant at *a*.

3. The cofinite topology on \mathbb{R} is not Hausdorff: if *U* is a neighborhood of 0 and *V* is a neighborhood of 1, then the complements $A = \mathbb{R} \setminus U$ and $B = \mathbb{R} \setminus V$ are finite. But then the complement of $U \cap V$ is $A \cup B$, which is also finite. since $U \cap V$ has finite complement, it is in particular nonempty. This shows that \mathbb{R}_{cf} is not Hausdorff.

4. Let $A \subset X$. (\Rightarrow) Suppose $\partial A = \emptyset$. Since $\partial A = \overline{A} \setminus \text{Int}(A)$, this means that $\overline{A} = \text{Int}(A)$. But we always have the inclusions

$$\operatorname{Int}(A) \subset A \subset \overline{A}$$
,

so combining this with

 $A \subset \overline{A} = \operatorname{Int}(A)$ and $\overline{A} = \operatorname{Int}(A) \subset A$

gives the identifications

A = Int(A) and $A = \overline{A}$.

In other words, *A* is closed and open.

(\Leftarrow) If *A* is closed and open, then *A* = Int(*A*) and *A* = \overline{A} , so

$$\partial(A) = \overline{A} \setminus \operatorname{Int}(A) = A \setminus A = \emptyset.$$

5. For this problem, it is enough to find a space X with an open dense set A, since then the closure of A will be X and therefore open. An example would be any set X (at least two points) with a particular point topology. Then let A be any set containing the particular point but not equal to all of X.

6. Let $A \subset X$ be a subspace.

(⇒) Assume *C* ⊂ *A* is closed. This means that if we let $U = A \setminus C$, then $U = V \cap A$ for some open *V* ⊂ *X*. Then $D = X \setminus V$ is closed in *X* and

$$C = A \setminus U = A \setminus (V \cap A) = A \setminus ((X \setminus D) \cap A) = A \setminus (A \setminus (D \cap A)) = D \cap A.$$

(\Leftarrow) Assume $C = D \cap A$ for some closed $D \subset X$. Then $V = X \setminus D$ is open in X and

$$A \setminus C = A \setminus (D \cap A) = A \setminus ((X \setminus V) \cap A) = A \setminus (A \setminus (V \cap A)) = V \cap A$$

This means that $A \setminus C$ is open, so *C* must be closed.

7. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the addition function given by f(x, y) = x + y. Let $(a, b) \subseteq \mathbb{R}$ be a basic open set. We need to show that $f^{-1}((a, b))$ is open in \mathbb{R}^2 . This is the intersection of the two diagonal half-planes

$$U = \{(x, y) \mid x + y < b\}$$
 and $V = \{(x, y) \mid x + y > a\}.$

We already saw earlier in the course that half-planes like these are open in \mathbb{R}^2 , but here is the argument for *V*.

Suppose $(x, y) \in V$. By translating the in the *x*-direction by a quantity of -a and then rotating by 45° clockwise, we find that the distance of the point (x, y) from the line x + y = a is

$$\frac{\sqrt{2}}{2}(x+y-a)$$

So we may take a ball with center (x, y) and radius $\frac{\sqrt{2}}{2}(x + y - a)$ as a neighborhood of (x, y) in *V*.

8. Here is a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous *only* at x = 0. We define

$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Then if U = (a, b) is a neighborhood of f(0) = 0, we have $0 \in V = (a, b) \subseteq f^{-1}(U)$. This shows *f* is continuous at 0.

On the other hand, let $c \neq 0$. For simplicity, we assume c > 0. Case I: ($c \in \mathbb{Q}$): then f(c) = c and U = (0, 2c) is a neighborhood of f(c), but

$$f^{-1}(U) = (0, 2c) \cap \mathbb{Q}$$

does not contain any neighborhood of *c*.

Case II: $(c \notin \mathbb{Q})$: then f(c) = 0 and U = (-c/2, c/2) is a neighborhood of 0. But $f^{-1}(U)$ does not contain any neighborhood of *c* since it does not contain any points from $(c/2, c) \cap \mathbb{Q}$.