Math 351 - Elementary Topology
Monday, October 8  *x  Exam 1 Review Problems

1. Say U C R is open if either it is finite or U = R. Why is this not a topology?
2. Let X = {a,b}.
(a) If X is equipped with the trivial topology, which functions f : X — R are continu-
ous? What about functions ¢ : R — X?

(b) If X is equipped with the topology {®,{a}, X}, which functions f : X — R are
continuous? What about functions g : R — X?

(c) If X is equipped with the discrete topology, which functions f : X — R are contin-
uous? What about functions ¢ : R — X?

3. Given an example of a topology on R (one we have discussed) that is not Hausdorff.
4. Show thatif A C X, then dA = @ if and only if A is both open and closed in X.

5. Give an example of a space X and an open subset A such that Int(A) # A.

6. Let A C X be a subspace. Show that C C A is closed if and only if C = D N A for some
closed subset D C X.

7. Show that the addition function f : R> — R, defined by f(x,y) = x + vy, is continuous.

8. Give an example of a function f : R — R which is continuous only at 0 (in the usual
topology). Hint: Define f piecewise, using the rationals and irrationals as the two pieces.

Solutions.

1. This fails the union axiom. Any singleton set would be open. The set IN is a union of single-
ton sets and so should also be open, but it is not. So this is not a topology.

2. X ={a,b}.

a) X has the trivial topology: Only constant functions X — R are continuous, since if f(a) #
f(b), then U = R\ {f(b)} is open in R, but f~}(U) = {a} would not be open in X. On the
other hand, every function R — X is continuous by homework problem 4.1(b).
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b) X has the topology {®, {a}, X}: This is the same as part a). If f : X — R is not constant,
then U = R\ {f(a)}is openin R, but f~}(U) = {b} is not open in X. For a function f : R —
X, the only requirement for it to be continuous is that f ~1(a) is open in R. So for each open set
U C IR, there is a continuous function f : R — X defined by

a xeclu

f(x):{b x & U.

¢) X has the discrete topology: By homework problem 4.1(a), every function X — R is con-
tinuous. The only continuous functions ¢ : R — X are the constant functions. To see this,
note that {a} is both open and closed in X. So ¢~!({a}) must also be closed and open in RR.
But the only closed and open sets in R are @ and R (this was the challenge problem on HW1).
If ¢71({a}) = @, this means g is constant at b, and if g~ !({a}) = R, this means g is constant at a.

3. The cofinite topology on R is not Hausdorff: if U is a neighborhood of 0 and V' is a neighbor-
hood of 1, then the complements A = R\ U and B = R\ V are finite. But then the complement
of UNV is AU B, which is also finite. since U NV has finite complement, it is in particular
nonempty. This shows that R s is not Hausdorff.

4. Let A C X.
(=) Suppose 0A = @. Since dA = A \ Int(A), this means that A = Int(A). But we always have
the inclusions
Int(A) C A C A,
so combining this with
ACA=Int(A) and A=Int(A)CA

gives the identifications
A =Int(A) and A=A

In other words, A is closed and open.
(<) If A is closed and open, then A = Int(A) and A = A, so

d(A) = A\Int(A) = A\ A =0Q.

5. For this problem, it is enough to find a space X with an open dense set A, since then the
closure of A will be X and therefore open. An example would be any set X (at least two points)
with a particular point topology. Then let A be any set containing the particular point but not
equal to all of X.

6. Let A C X be a subspace.
(=) Assume C C A is closed. This means that if we let U = A\ C, then U = V N A for some
open V C X. Then D = X\ Vis closed in X and

C=A\U=A\(VNA)=A\((X\D)NnA)=A\(A\(DNA))=DnA.



(<) Assume C = D N A for some closed D C X. Then V = X \ D is open in X and
A\C=A\(DNA)=A\((X\V)NA)=A\(A\(VNA)=VNA.
This means that A \ C is open, so C must be closed.

7. Let f : R> — R be the addition function given by f(x,y) = x +y. Let (a,b) C R be a basic
open set. We need to show that f~1((a,b)) is open in IR?. This is the intersection of the two
diagonal half-planes

U={(xy) |x+y<b} and V={(xy)|x+y>a}.

We already saw earlier in the course that half-planes like these are open in R2, but here is the
argument for V.

Suppose (x,y) € V. By translating the in the x-direction by a quantity of —a and then rotating
by 45° clockwise, we find that the distance of the point (x,y) from the line x +y = a is

\/TE(quy—a).

So we may take a ball with center (x,y) and radius \/TE(x + y — a) as a neighborhood of (x,y)

inV.
8. Here is a function f : R — R that is continuous only at x = 0. We define

x xeQ

f(x):{o x ¢ Q.

Then if U = (a,b) is a neighborhood of f(0) = 0, we have 0 € V = (a,b) C f~!(U). This
shows f is continuous at 0.

On the other hand, let ¢ # 0. For simplicity, we assume ¢ > 0.

Case I: (c € Q): then f(c) = cand U = (0, 2c) is a neighborhood of f(c), but

fHU) = (0,20)NQ

does not contain any neighborhood of c.
Case II: (c ¢ Q): then f(c) = 0and U = (—c/2,c/2) is a neighborhood of 0. But f~(U) does
not contain any neighborhood of ¢ since it does not contain any points from (c¢/2,c) N Q.



