
Rewriting systems for perfect groups

Rewriting systems for a family of perfect groups

Jack Schmidt

University of Kentucky

AMS CGT 2007-03-03

Rewriting systems are used to efficiently find and analyze families of perfect groups analogous to p-groups of
maximal class. Computer calculations are quite effective with this method and are used to give evidence and
counterexamples to various generalizations of the theory of p-groups of maximal class to these families of perfect
groups.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Overview

I began studying some new groups that seemed similar to some old
groups.

There are good ideas and software for the old groups, but the old
software does not work for the new groups.

I made new software to apply the old ideas to the new groups.

The new software shows the new groups really are different, and
probably need new ideas too.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

A family of perfect groups

Key points about the new groups

The new groups have a very natural definition

The definition is almost identical to coclass for p-groups (the old
groups)

The new groups have some nice properties very similar to the
properties of the old groups, specifically the coclass tree and
uniserial action

Therefore, one should try to mimic the old calculations and find
some partial coclass trees

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

A family of perfect groups

The family is natural

Nilpotent normal subgroups to build the group

Groups G can be understood as built from G/N and N, and we
even assume N is nilpotent.

Groups without nilpotent normal subgroups are tabulated up to
very large orders. For small orders (< 1010) the perfect ones are
direct products of simple groups.

The unique largest nilpotent normal subgroup is called the Fitting
subgroup, and is denoted Fit(G ).

Nilpotent groups are too hard to handle all at once

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

A family of perfect groups

The family is natural

Modules to build the normal nilpotent subgroup

All nilpotent minimal normal subgroups are Z[G/Fit(G )]-modules.

There is a unique largest subgroup of G that is a
Z[G/Fit(G )]-module, namely the center of Fit(G ).

G is a repeated downward extension of G/Fit(G ) by
Z[G/Fit(G )]-modules, namely the factors of the upper central
series of Fit(G ).

Z[G/Fit(G )] is fixed, but has complicated modules

My family is defined by requiring we use only simple modules

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

A family of perfect groups

The groups are nice

What if the modules are simple?

If they are simple modules, then Fit(G ) is a p-group

The upper central and lower central series are equal

In fact all characteristic subgroups are in that series

So a sort of uniserial action of G/Fit(G ) on Fit(G )

We say G/N is the parent of G , and this forms a tree with the
original G/Fit(G ) as a root (be careful of Fit(G/N) 6= Fit(G )/N)

Surely these trees are infinite with short, periodic limbs all coming
off one infinite branch which defines a nice uniserial action on a
p-adic group of some sort?

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

A family of perfect groups

The groups are nice

Summary of the groups

Natural definition linking the module and commutator structure of
the Fitting subgroup

Nice properties similar to coclass for p-groups

Studied together as a tree, and the p-group case is very well
studied

Should expect entire family to be described by a single infinite
group constructed from (very many) repeated extensions by simple
modules

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

Key points for rewriting systems

Old software fails due to inappropriate data-type (one cannot
handle perfect groups, one cannot handle extensions)

Rewriting systems generalize pc-presentation to more groups

Handle extensions very well, especially by nilpotent subgroups

Allows my “new” algorithm for efficient calculation of isomorphism
classes, modeled after pc-presentation algorithm

Much faster for the generalized coclass trees than the old software
for permutation groups

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

Rewriting systems for extensions

What are rewriting systems?

Formalize what it means to simplify in a finitely presented group

Elements of a group are represented as formal products of
generators X , so an epimorphism φ : X ∗ → G takes formal words
and multiplies them.

If φ(x) = φ(y) represent the same element, which should we use, x
or y , to represent the element?

There is no general answer for finitely presented groups

Rewriting systems are a systematic answer to this question, and
always exist for finite groups

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

Rewriting systems for extensions

Definition of simplest words and rules

Define an ordering on the free monoid, such that x < y if
φ(x) = φ(y) and we prefer x to y

We should also prefer axb to ayb.

Should be well-ordered, so there is a simplest word for every φ(x)

Replacing ayb by axb is symbolized by the rule y 7→ x .

The official rules of the rewriting system are
{y 7→ x : φ(y) = φ(x), x < y , x and every proper subword of y are
simplest words }

Necessary and sufficient to reduce any word to its simplest form

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

Rewriting systems for extensions

Simplest words for extensions

If φ : X ∗ → G/N and φ : Y ∗ → N have been used to form
rewriting systems for G/N and N, then we can define a
φ : (X ∪ Y )∗ → G as well

Since Ng = gN, we can rewrite yx to xy ′ and group all the ys
together.

Define an ordering on (X ∪ Y )∗ so that yx > xy ′. The standard
way to do this is called the wreath product ordering.

The simplest words of G are then just xy where x is a simplest
word for G/N and y is a simplest word for N.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

Rewriting systems for extensions

Rules and tails for extensions
The rules for G are

1 The unchanged rules for N

2 yx 7→ xy ′ describing the action of G/N on N

3 Modified rules for G/N: x 7→ x ′ becomes x 7→ x ′y
where y is the simplest word for φ(x ′)−1φ(x) ∈ N

The ys in the third type of rules are called tails.

An extension is defined by:

1 the rules of G/N,

2 the rules of N,

3 the action (rules) of G/N on N, and

4 the tails, a function from Rules(G/N) to N.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Not all tails work

Not every element of NRules(G/N) defines a downward extension of
G/N by N.

Difference between final forms of words and simplest form

Minimal word with non-simplest final form is ABC with AB 7→ R
and BC 7→ S rules, but RC and AS don’t have a common final
form

If these overlaps are fine, then all words are fine.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Overlapping rules
Most overlaps in an extension work out automatically:

1 N with N work out, because N is a group

2 N with action rules work out, because each element of G/N acts as
an automorphism of N,

3 Action rules with G/N work out, because the map from G/N to
Aut(N) is a homomorphism.

4 N and G/N don’t overlap

Only overlaps left are G/N with G/N and these must always agree
on the G/N part; only the N part of the final form can differ.

All final forms are xy , with x and y simplest forms for G/N and N

In the extension, all final forms must be equal, so it defines a
quotient N/K instead of N.

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Checking overlaps is linear algebra

Need to simplify products in X ∗ as if they were in G .

Applying xi 7→ x ′
i yi :

axib → ax ′
i yib → ax ′

i b yb
i

Where yb
i is the simplest form for φ(yi )

φ(b) ∈ N.

Many applications like this still give words of the form xym1
1 ym2

2 · · ·
where yi are tails, and mi are in group ring of G/N

Setting two final forms equal only requires the tails yi to be in the
kernels of the differences mi −m′

i .

Finding tails is just a giant null space calculation

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Isomorphism testing is also easy

Checking overlaps finds Z 2(G/N,N), want H2 = Z 2/B2 instead

Finding B2(G ,V ) is very easy; “Fox derivative”

Still isomorphic groups that are not isomorphic as extensions;
orbits of stabilizer of V in Aut(G/N) on H2(G/N,N)

Algorithm constructs Aut(G ) while computing orbits and from first
cohomology

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Using rewriting systems

An algorithm to find tails

Comparison with other algorithms

Method: Factor Sets Polycyclic Subgroups Rewriting

Person: Schreier Eick Holt Schmidt
Groups: Finite Polycyclic Finite Finite
Input: AsSet Pc-Pres Perm Rws
Output: AsSet Pc-Pres Fp-group Rws
Time: poly(G) polylog(G) polylog(G/H) polylog(G)

Notice difference in input/output data types

Subgroup chains can be added to the rewriting algorithm, but only
reduces constants, not complexity

Jack Schmidt Rewriting systems for perfect groups



Rewriting systems for perfect groups

Conclusion

Conclusion

Rewriting systems are abstractly nice for iterated extensions

Polynomial algorithm for generation and isomorphism testing
(requires arithmetic oracles, and has high startup cost).

Will be available as a GAP package later this year

Already used to compute coclass trees to depth 3 for all simple
groups of order less than 1000, and very deep tree for A7 mod 2

Some trees are finite! Some appear to have multiple trunks!

The End

Jack Schmidt Rewriting systems for perfect groups


	A family of perfect groups
	The family is natural
	The groups are nice

	Using rewriting systems
	Rewriting systems for extensions
	An algorithm to find tails

	Conclusion

