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Course Overview

Goals and expectations

Goals and expectations

My goal is to make some portion of the literature in algebra and
combinatorics more accessible, especially the excellent book by B.
Sagan

This is the “movie version” of the book, where important themes
are made clear, but details are freely omitted

During the first three weeks participants are expected to come with
an open mind and to read through the first two chapters.

During the last three weeks, some volunteers will be expected to
be bold and explain to us some facet of Sagan’s book
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Overview of course

Overview of Course

In the first three weeks we will setup an algebraic and
combinatorial scaffolding so that we can work on the
high points of the book safely.

In the last three weeks we will look at the extremely interesting
interaction of algebra and combinatorics present in the ordinary
representation theory of the symmetric groups.

First three weeks:

1 Permutations and Tableaux

2 Character theory and Robinson-Schensted

3 Representation theory and the Branching Rule
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First week readings

Tuesday

Outline of the reading for Tuesday

(1.1) Cycle notation, Cycle types, and Partitions

Conjugacy in Sym(n) and Centralizers

(1.2) Permutation matrices and representations

Fixed point formula

(1.3) Coset representatives

(1.12) Transversals

(1.6) Permutation action on Young tabloid

Exercises: Ch1: #1,2,3,5c,11
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First week readings

Thursday

Outline of the reading for Thursday

(1.6) Tabloids

(2.1) Tableaux etc.

Theorem 2.1.12 for permutations, not modules

(2.3) Row and column stabilizers

Exercises: Ch2: #1,2,8,10
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Basic definitions

Permutations, symmetric group, fixed and moved points

Permutations

A permutation on a set Ω is a one-to-one, onto function from Ω
to Ω

Two permutations on Ω can be composed as functions to yield
another permutation

The set of all such functions is called the symmetric group on Ω
and denoted Sym(Ω)

When Ω = {1, 2, . . . , n} we write Sym(Ω) = Sym(n) = Sn

#Sym(n) = n!

If π(x) = x , then x is a fixed point, otherwise it is a moved
point.
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Basic definitions

Cycle notation

Cycle notation

A cycle π = (a1, a2, . . . , an) is a special type of permutation

π(x) =


ai+1 if x = ai , 1 ≤ i < n

a1 if x = an

x otherwise

Two cycles are disjoint if no point of Ω is moved by both

Cycle notation for a permutation π is a formal product of disjoint
cycles whose actual product is π

Example: π = (1, 2, 3)(4, 5) has
π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 5, π(5) = 4
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Basic definitions

Cycle notation

Cycle notation is ambiguous but nice

Many cycle notations represent the same permutation

(1, 2, 3) = (2, 3, 1) = (3, 1, 2) and (1, 2)(3, 4) = (3, 4)(1, 2)

Sometimes trivial cycles like “(5)” may be added to the notation
to emphasize that 5 ∈ Ω is a fixed point.

The order of a permutation is the least positive integer n such
that the composition of the permutation with itself n times is the
identity

Computing orders of permutations is easy from cycle notation.
The order of a cycle is the number of moved points (its cycle
length), and the order of a permutation is the least common
multiple of its cycle lengths.
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Conjugacy and centralizers

Cycle type

Cycle type and conjugacy
The order of a permutation only depends on cycle lengths

Cycle behave nicely under conjugation: For τ = (a1, a2, . . . , an)
and a permutation π, applying π−1 first, then τ , then π is the
same as applying the cycle (π(a1), π(a2), . . . , π(an))

The cycle type of a permutation is the sequence whose nth term
is the number of cycles of length n in any cycle notation for the
permutation

The cycle type is well-defined, and does not change under
conjugation

In fact, two permutations are conjugate if and only if they have the
same cycle type

To convert (1, 2, 3)(4, 5) to (1, 3, 4)(2, 5) conjugate by π such that
π(1) = 1, π(2) = 3, π(3) = 4, π(4) = 2, π(5) = 5
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Conjugacy and centralizers

Centralizers

Centralizers
The centralizer of a permutation is the set of all permutations
which commute with it

The centralizer of a cycle τ is the set of all elements τnπ where n
is an integer and π does not move any moved point of τ

CSym(n)(τ) = 〈τ〉 × Sym(Fix(τ))

The centralizer of product of cycles π = τ1 · · · τn of equal lengths
contains the intersections of the centralizers of the τi . The
quotient is isomorphic to Sym(n) and a quotient element σ will act
by taking τi to τσ(i)

CG (τ1 · · · τn) = (〈τ1〉 × · · · × 〈τn〉) n Sym(n) × Sym(Fix(τ))

The centralizer of a permutation is the intersection of the
centralizers of the products of all of its cycles of equal lengths
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Conjugacy and centralizers

Counting

Counting conjugacy classes

Given a cycle type, there are n! ways to fill it in with numbers

But each element of the centralizer gives a different way of filling
in the numbers and getting the same permutation (but different
cycle notation)

So to find the number of distinct permutations with the same cycle
type we divide n! by the size of the centralizer

If the cycle type has an cycles of length n, then the centralizer has
size:

∞∏
n=1

(nan(an!))

Counting the number of cycle types is harder, and is the same as
counting partitions
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Conjugacy and centralizers

Counting

Pretty picture interlude

Filling in cycle notation is like filling a Ferrer diagram

(?,?,?)(?,?,?)(?,?)(?)

= (6,4,5)(2,3,1)(8,7)(9)

? ? ?

? ? ?

? ?
?

=

6 4 5

2 3 1

8 7
9
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Conjugacy and centralizers

Counting

Pretty picture interlude

Filling in cycle notation is like filling a Ferrer diagram

(1,2,3)(4,5,6)(7,8)(9)

= (6,4,5)(2,3,1)(8,7)(9)
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Conjugacy and centralizers

Counting

Pretty picture interlude
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Alternate represenations

Matrix representation

Permutations as matrices
Permutations can act on vectors as well as points

Given a basis {bi : i ∈ Ω}, natural action of π takes
∑

αibi to∑
αibπ(i)

With respect to this basis, matrix has all rows and columns with
exactly one 1 and the rest zeros.

Example: (1, 2, 3)(5, 6) acts on a seven dimensional space as the
matrix 

. 1 . . . . .

. . 1 . . . .
1 . . . . . .
. . . 1 . . .
. . . . . 1 .
. . . . 1 . .
. . . . . . 1


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Alternate represenations

Matrix representation

Permutation representations

A permutation representation is a homomorphism from a group
into Sym(n)

A permutation representation may be thought of as a matrix
represetation; use permutation matrices instead of permutations

One can then apply representation theory to break the
representation into smaller pieces, and understand the group

As a silly aside, note that π(i) = i if and only if the (i , i)th entry
of the matrix version of π is 1, otherwise it is 0

So the number of fixed points is equal to the sum of the diagonal
entries of the matrix; this sum is called the trace
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Alternate represenations

Permutation representation

Earlier example of permutation representation

When we looked at Sym(9) acting on the cycle notations for the
permutation (1, 2, 3)(4, 5, 6)(7, 8)(9), we noticed the centralizer
were those that acted trivially on the permutation, though not on
the notation

The rest of the group Sym(9) took the permutation to a different
permutation of the same cycle type, so we have a permutation
representation of Sym(9) acting on the conjugacy class of
(1, 2, 3)(4, 5, 6)(7, 8)(9)

The subgroup that acted trivially on the one point
“(1, 2, 3)(4, 5, 6)(7, 8)(9)” was interesting

It is nice that no element of Sym(9) except the identity acts
trivially on all the elements of the conjugacy class
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Alternate represenations

Orbit stabilizer

Counting elements
The set of all points π(x) for a fixed x and varying π ∈ G is called
the orbit of x under G

If π(x) = σ(x), then σ−1(π(x)) = x and the composition of σ−1

and π has x has a fixed point

The subgroup of all permutations that have x ∈ Ω as a fixed point
is called the stabilizer of x

If two elements take x to the same place, then their quotient lies in
in the stabilizer, and conversely:

If two permutations lie in the same coset of the stabilizer, then
they take the point to the same place

The number of points in the orbit is equal to the size of the group
divided by the size of the stabilizer of a point

The stabilizer of π(x) is the conjugate by π of the stabilizer of x
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Alternate represenations

Transitive groups

Transitive groups
If Ω consists of only one orbit, then the action is said to be
transitive

There is then a bijection between Ω and the cosets of the stabilizer
of a point

Choosing a different point chooses a different conjugate of the
stabilizer

The elements which act trivially on all points are those in the
intersection of all conjugates of the stabilizer

Given a group and a conjugacy class of subgroups, one can just
take Ω to be the cosets of one specific subgroup in the conjugacy
class

The idea of a group action, and the idea of a conjugacy class of
subgroups of a group are equivalent
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Alternate represenations

Blocks and subgroups

Blocks and subgroups above the stabilizer

If we have a chain of subgroups H ≤ K ≤ G , then the orbits of K
are permuted by the elements of G , giving a new group action

The stabilizer of this action is K , its orbits are called blocks

This is what happened in the centralizer of a product of cycles of
the same length

H is the intersection of the centralizers of the cycles, K is
centralizer of their product, K acts by permuting the cycles
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Alternate represenations

Young tabloid

Final example: Young tabloid

We can define a new equivalence relation on the diagrams: two
diagrams are row equivalent if there is a permutation that takes
one to the other while fixing the rows setwise

The stabilizer of a diagram is easy to describe:

If the diagram is filled in as

1 2 3

4 5 6

7 8
9

then the stabilizer is

Sym({1, 2, 3}) × Sym({4, 5, 6}) × Sym({7, 8}) × Sym({9})
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Conclusion

Conclusion
Permutations are more easily understood in cycle notation: can
read off

1 Order

2 Conjugacy class

3 Centralizer

Permutations can act on vectors and the trace is an important and
natural invariant

Other groups can act as permutations

Through the magic of stabilizers, these actions are just actions on
cosets

Blocks encode the idea of “subgroup”

Understanding permutations means understanding subgroups

The End
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